Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Determine which of the following are trigonometric identities. 6 I. cos(4x)+cos(2x)2cot(3x)=cot(x)\frac { \cos ( 4 x ) + \cos ( 2 x ) } { 2 \cot ( 3 x ) } = \cot ( x ) II. cos(4x)+cos(x)sin(3x)sin(x)=cot(2x)\frac { \cos ( 4 x ) + \cos ( x ) } { \sin ( 3 x ) - \sin ( x ) } = \cot ( 2 x ) III. cos(6x)+cos(2x)sin(4x)+sin(2x)=cot(3x)\frac { \cos ( 6 x ) + \cos ( 2 x ) } { \sin ( 4 x ) + \sin ( 2 x ) } = \cot ( 3 x )

Free
(Multiple Choice)
4.8/5
(38)
Correct Answer:
Verified

A

Expand the expression below and use fundamental trigonometric identities to simplify. (sin(ω)+cos(ω))2( \sin ( \omega ) + \cos ( \omega ) ) ^ { 2 }

Free
(Multiple Choice)
4.8/5
(39)
Correct Answer:
Verified

C

Verify the given identity. cosucosvcosu+cosv=tan12(u+v)tan12(uv)\frac { \cos u - \cos v } { \cos u + \cos v } = - \tan \frac { 1 } { 2 } ( u + v ) \tan \frac { 1 } { 2 } ( u - v )

Free
(Essay)
4.8/5
(45)
Correct Answer:
Verified

cosucosvcosu+cosv=2sin(u+v2)sin(uv2)2cos(u+v2)cos(uv2)=tan(u+v2)tan(uv2)=tan12(u+v)tan12(uv)\begin{aligned}\frac { \cos u - \cos v } { \cos u + \cos v } & = \frac { - 2 \sin \left( \frac { u + v } { 2 } \right) \sin \left( \frac { u - v } { 2 } \right) } { 2 \cos \left( \frac { u + v } { 2 } \right) \cos \left( \frac { u - v } { 2 } \right) } \\& = - \tan \left( \frac { u + v } { 2 } \right) \tan \left( \frac { u - v } { 2 } \right) \\& = - \tan \frac { 1 } { 2 } ( u + v ) \tan \frac { 1 } { 2 } ( u - v )\end{aligned}

Use the product-to-sum formula to write the given product as a sum or difference. 8sinπ8sinπ88 \sin \frac { \pi } { 8 } \sin \frac { \pi } { 8 }

(Multiple Choice)
4.8/5
(36)

Verify the identity shown below. tanα+cotβtanαcotβ=tanβ+cotα\frac { \tan \alpha + \cot \beta } { \tan \alpha \cot \beta } = \tan \beta + \cot \alpha

(Essay)
4.8/5
(37)

Use fundamental identities to simplify the expression below and then determine which of the following is not equivalent. sinα(cscαsinα)\sin \alpha ( \csc \alpha - \sin \alpha )

(Multiple Choice)
4.8/5
(33)

Find the exact value of tan(u+v)\tan ( u + v ) given that sinu=1161\sin u = - \frac { 11 } { 61 } and cosv=4041\cos v = \frac { 40 } { 41 } . (Both uu and vv are in Quadrant IV.)

(Multiple Choice)
4.9/5
(36)

Determine which of the following are trigonometric identities. I. cos(t)cos(s)sin(t)+sin(s)+sin(t)sin(s)cos(t)+cos(s)=0\frac { \cos ( \mathrm { t } ) - \cos ( \mathrm { s } ) } { \sin ( \mathrm { t } ) + \sin ( \mathrm { s } ) } + \frac { \sin ( \mathrm { t } ) - \sin ( \mathrm { s } ) } { \cos ( \mathrm { t } ) + \cos ( \mathrm { s } ) } = 0 II. cos(t)+cos(s)sin(t)+sin(s)+sin(t)+sin(s)cos(t)+cos(s)=1\frac { \cos ( \mathrm { t } ) + \cos ( \mathrm { s } ) } { \sin ( \mathrm { t } ) + \sin ( \mathrm { s } ) } + \frac { \sin ( \mathrm { t } ) + \sin ( \mathrm { s } ) } { \cos ( \mathrm { t } ) + \cos ( \mathrm { s } ) } = 1 III. cos(t)+sin(s)cos(t)sin(s)=cos(s)+sin(t)\frac { \cos ( \mathrm { t } ) + \sin ( \mathrm { s } ) } { \cos ( \mathrm { t } ) \sin ( \mathrm { s } ) } = \cos ( \mathrm { s } ) + \sin ( \mathrm { t } )

(Multiple Choice)
4.8/5
(30)

If x=10sinθx = 10 \sin \theta , use trigonometric substitution to write 100x2\sqrt { 100 - x ^ { 2 } } as a trigonometric function of θ\theta , where π2<θ<π2- \frac { \pi } { 2 } < \theta < \frac { \pi } { 2 } .

(Multiple Choice)
4.9/5
(40)

Use the sum-to-product formulas to write the given expression as a product. cos8θcos6θ\cos 8 \theta - \cos 6 \theta

(Multiple Choice)
4.8/5
(36)

Use the half-angle formulas to determine the exact value of the following. cos(22.5)\cos \left( - 22.5 ^ { \circ } \right)

(Multiple Choice)
4.9/5
(44)

Expand the expression below and use fundamental trigonometric identities to simplify. (sin(ω)+cos(ω))2( \sin ( \omega ) + \cos ( \omega ) ) ^ { 2 }

(Multiple Choice)
4.9/5
(42)

Multiply; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. (sinx+cosx)(sinxcosx)( \sin x + \cos x ) ( \sin x - \cos x )

(Multiple Choice)
4.8/5
(37)

Write the given expression as the sine of an angle. sin85cos50+sin50cos85\sin 85 ^ { \circ } \cos 50 ^ { \circ } + \sin 50 ^ { \circ } \cos 85 ^ { \circ }

(Multiple Choice)
4.7/5
(45)

Use the half-angle formulas to determine the exact value of the following. cos(22.5)\cos \left( 22.5 ^ { \circ } \right)

(Multiple Choice)
5.0/5
(28)

Write the given expression as an algebraic expression. cos(arccosxarcsinx)\cos ( \arccos x - \arcsin x )

(Multiple Choice)
4.8/5
(34)

Find the exact solutions of the given equation in the interval [0,2π)[ 0,2 \pi ) .

(Multiple Choice)
4.9/5
(38)

Verify the identity shown below. tanθ+1secθ+cscθ=sinθ\frac { \tan \theta + 1 } { \sec \theta + \csc \theta } = \sin \theta

(Essay)
4.8/5
(34)

Add or subtract as indicated; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. sinx+1+1sinx1\sin x + 1 + \frac { 1 } { \sin x - 1 }

(Multiple Choice)
4.9/5
(38)

Find the exact value of tan(u+v)\tan ( u + v ) given that sinu=35\sin u = - \frac { 3 } { 5 } and cosv=2425\cos v = \frac { 24 } { 25 } . (Both uu and vv are in Quadrant IV.)

(Multiple Choice)
4.9/5
(38)
Showing 1 - 20 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)