Exam 12: Review of Graphs, Equations, and Inequalities

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Rewrite i=1n9i3n5\sum _ { i = 1 } ^ { n } \frac { 9 i ^ { 3 } } { n ^ { 5 } } as a rational function S(n)S ( n ) and find limnS(n)\lim _ { n \rightarrow \infty } S ( n ) .

Free
(Multiple Choice)
4.7/5
(27)
Correct Answer:
Verified

D

Consider the following graph of the function and approximate limx0e4x1x\lim _ { x \rightarrow 0 } \frac { e ^ { - 4 x } - 1 } { x } , if it exists.  Consider the following graph of the function and approximate  \lim _ { x \rightarrow 0 } \frac { e ^ { - 4 x } - 1 } { x } , if it exists.

Free
(Multiple Choice)
4.9/5
(36)
Correct Answer:
Verified

B

Use the figure below to approximate the slope of the curve at the point (x,y)( x , y ) .  Use the figure below to approximate the slope of the curve at the point  ( x , y ) .

Free
(Multiple Choice)
4.7/5
(29)
Correct Answer:
Verified

E

Use the limit process to find the area of the region between f(x)=x2+5f ( x ) = x ^ { 2 } + 5 and the xx -axis on the interval [0,6][ 0,6 ] .

(Multiple Choice)
4.8/5
(42)

Find all solutions of the equation 14x21x2=01 - \frac { 4 } { x } - \frac { 21 } { x ^ { 2 } } = 0

(Multiple Choice)
4.9/5
(31)

Use the derivative of f(x)=5x3+15xf ( x ) = 5 x ^ { 3 } + 15 x to determine any points on the graph of f(x)f ( x ) at which the tangent line is horizontal.

(Multiple Choice)
4.9/5
(39)

Find the values of xx that solve the equation (13x2)2=25( 13 x - 2 ) ^ { 2 } = 25

(Multiple Choice)
4.9/5
(31)

Find limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } for f(x)=4+7xf ( x ) = - 4 + 7 x .

(Multiple Choice)
4.8/5
(37)

If f(x)=3x24xf ( x ) = - 3 x ^ { 2 } - 4 x , find the following limit, if it exists. limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h }

(Multiple Choice)
4.7/5
(34)

Use the figure below to approximate the slope of the curve at the point (x,y)( x , y ) .  Use the figure below to approximate the slope of the curve at the point  ( x , y ) .

(Multiple Choice)
4.9/5
(41)

Use the figure below to approximate the slope of the curve at the point (x,y)( x , y ) .  Use the figure below to approximate the slope of the curve at the point  ( x , y ) .

(Multiple Choice)
4.7/5
(38)

 Graph the circle (x4)2+(y6)2=9\text { Graph the circle } ( x - 4 ) ^ { 2 } + ( y - 6 ) ^ { 2 } = 9

(Multiple Choice)
4.8/5
(32)

Let MM denote the midpoint of the line segment joining (4,3)( 4,3 ) and (9,6)( 9,6 ) . Find the distance from MM to the point (3,6)( - 3 , - 6 ) . Round the answer to the nearest tenth.

(Multiple Choice)
4.9/5
(35)

Complete the table and use the result to estimate limx8x+8x2+4x32\lim _ { x \rightarrow - 8 } \frac { x + 8 } { x ^ { 2 } + 4 x - 32 } numerically. x -8.1 -8.01 -8.001 -8 -7.999 -7.99 -7.9 f(x) ?

(Multiple Choice)
4.9/5
(40)

Find the distance between the points (3,2)( 3 , - 2 ) and (8,2)( 8 , - 2 ) .

(Multiple Choice)
4.7/5
(27)

Estimate the following limit numerically, if it exists. limx1x1x2+4x5\lim _ { x \rightarrow 1 } \frac { x - 1 } { x ^ { 2 } + 4 x - 5 }

(Multiple Choice)
4.9/5
(42)

Find the following limit, if it exists. limx5x8\lim _ { x \rightarrow \infty } \frac { 5 } { x ^ { 8 } }

(Multiple Choice)
4.8/5
(40)

Use the figure below to approximate the slope of the curve at the point (x,y)( x , y ) .  Use the figure below to approximate the slope of the curve at the point  ( x , y ) .

(Multiple Choice)
4.9/5
(29)

If f(x)=2x2+xf ( x ) = - 2 x ^ { 2 } + x , find the following limit, if it exists. limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h }

(Multiple Choice)
4.7/5
(33)

Find limt3t327t3\lim _ { t \rightarrow 3 } \frac { t ^ { 3 } - 27 } { t - 3 } .

(Multiple Choice)
4.9/5
(38)
Showing 1 - 20 of 99
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)