Exam 8: Sequences, Series, and Probability

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Evaluate using a graphing utility: 20P5{ } _ { 20 } P _ { 5 }

Free
(Multiple Choice)
4.9/5
(34)
Correct Answer:
Verified

C

Determine whether the sequence is geometric. If so, find the common ratio.

Free
(Multiple Choice)
4.8/5
(43)
Correct Answer:
Verified

E

Use the first and second differences of the first five terms of the given sequence to determine whether the sequence has a linear model, a quadratic model, or neither. =0 =+8n

Free
(Multiple Choice)
4.9/5
(36)
Correct Answer:
Verified

E

Use the Binomial Theorem to expand the complex number. Simplify your result. (5+4i)4( 5 + 4 i ) ^ { 4 }

(Multiple Choice)
4.9/5
(32)

Determine whether the sequence is arithmetic. If so, find the common difference. 3,7,11,15,19- 3 , - 7 , - 11 , - 15 , - 19

(Multiple Choice)
4.8/5
(36)

Use mathematical induction to prove the following inequality for all n2n \geq 2 . (3)n+2>932n(2)n+5( 3 ) ^ { n + 2 } > \frac { 9 } { 32 } n ( 2 ) ^ { n + 5 }

(Essay)
4.9/5
(45)

Use mathematical induction to prove the following equality. ln(3nx1x2xn)=ln(3x1)+ln(3x2)++ln(3xn), where x1>0,x2>0,,xn>0\ln \left( 3 ^ { n } x _ { 1 } x _ { 2 } \ldots x _ { n } \right) = \ln \left( 3 x _ { 1 } \right) + \ln \left( 3 x _ { 2 } \right) + \ldots + \ln \left( 3 x _ { n } \right) , \text { where } x _ { 1 } > 0 , x _ { 2 } > 0 , \ldots , x _ { n } > 0

(Essay)
4.7/5
(34)

Find the probability for the experiment of drawing two marbles (without replacement) from a bag containing four green, six yellow, and five red marbles such that both Marbles are yellow.

(Multiple Choice)
4.9/5
(45)

You are given the probability that an event will not happen. Find the probability that the event will happen. P(E)=59P \left( E ^ { \prime } \right) = \frac { 5 } { 9 }

(Multiple Choice)
4.8/5
(29)

Find the sum of the infinite geometric series. n=04(15)n\sum _ { n = 0 } ^ { \infty } 4 \left( - \frac { 1 } { 5 } \right) ^ { n }

(Multiple Choice)
4.8/5
(29)

Use mathematical induction to prove the property for all positive integers n. [an]4=a4n\left[ a ^ { n } \right] ^ { 4 } = a ^ { 4 n }

(Essay)
4.8/5
(31)

Find the sum of the infinite series. i=13(13)i\sum _ { i = 1 } ^ { \infty } 3 \left( \frac { 1 } { 3 } \right) ^ { i }

(Multiple Choice)
4.8/5
(31)

Find the sum of the infinite series. i=12(14)i\sum _ { i = 1 } ^ { \infty } 2 \left( \frac { 1 } { 4 } \right) ^ { i }

(Multiple Choice)
4.7/5
(27)

 Use mathematical induction to prove that 160 is a factor of 24n+3+32 for all positive n\text { Use mathematical induction to prove that } 160 \text { is a factor of } 2 ^ { 4 n + 3 } + 32 \text { for all positive } n \text {. }

(Essay)
4.8/5
(35)

Use the Binomial Theorem to expand the following complex number. Write your answer in standard form. (3777i)3\left( - \frac { 3 } { 7 } - \frac { \sqrt { 7 } } { 7 } i \right) ^ { 3 }

(Multiple Choice)
4.8/5
(36)

Find the sum using the formulas for the sums of powers of integers. n=19n3\sum _ { n = 1 } ^ { 9 } n ^ { 3 }

(Multiple Choice)
4.7/5
(37)

Find Pk+1P _ { k + 1 } for the given PkP _ { k } . Pk=4k(k+1)P _ { k } = \frac { 4 } { k ( k + 1 ) }

(Multiple Choice)
4.9/5
(37)

Write the first five terms of the arithmetic sequence. a1=5,d=7a _ { 1 } = 5 , d = 7

(Multiple Choice)
4.9/5
(35)

Find the number of distinguishable permutations of the group of letters. G,A,U,S,S\mathrm { G } , \mathrm { A } , \mathrm { U } , \mathrm { S } , \mathrm { S }

(Multiple Choice)
4.7/5
(33)

Evaluate using a graphing utility: 15P6{ } _ { 15 } P _ { 6 }

(Multiple Choice)
4.9/5
(32)
Showing 1 - 20 of 119
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)