Exam 10: Analytic Geometry in Three Dimensions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find a set of parametric equations for the line that passes through the given points. Show all your work. (9,8, -2) ,(-3, -6,4)

Free
(Essay)
4.8/5
(38)
Correct Answer:
Verified

Answers may vary. One possible answer is shown below.
x=912t,y=814t,z=2+6tx = 9 - 12 t , y = 8 - 14 t , z = - 2 + 6 t

Find the angle between the two planes in degrees. Round to a tenth of a degree. 2x-y-4z=4 -3x-2y+4z=4

Free
(Multiple Choice)
4.9/5
(31)
Correct Answer:
Verified

C

Find the area of the triangle with the given vertices. (4,2,2),(9,7,0),(4,3,5)( - 4 , - 2,2 ) , ( - 9 , - 7,0 ) , ( - 4 , - 3,5 )

Free
(Multiple Choice)
5.0/5
(44)
Correct Answer:
Verified

C

Find a set of parametric equations for the line that passes through the given points. Show all your work. (9,92,72),(32,12,9)\left( 9 , \frac { 9 } { 2 } , \frac { 7 } { 2 } \right) , \left( \frac { 3 } { 2 } , \frac { 1 } { 2 } , 9 \right)

(Essay)
5.0/5
(37)

Find the torque on the crankshaft V\mathbf { V } using the data shown in the figure. Round to the nearest tenth of a foot-pound.  Find the torque on the crankshaft  \mathbf { V }  using the data shown in the figure. Round to the nearest tenth of a foot-pound.     \begin{array}{l} \|\mathbf{V}\|=1.6 \mathrm{ft} \\ \|\mathbf{F}\|=20 \mathrm{lb} \\ \theta=60^{\circ} \end{array}   \|\|=1.6 \|\|=20 \theta=6

(Multiple Choice)
4.9/5
(44)

Find the center and radius of the sphere. x2+y2+z216x+6y+6z+18=0x ^ { 2 } + y ^ { 2 } + z ^ { 2 } - 16 x + 6 y + 6 z + 18 = 0

(Multiple Choice)
4.8/5
(34)

Find the area of the parallelogram that has the vectors as adjacent sides. u=4,4,1,v=1,4,4\mathbf { u } = \langle - 4 , - 4 , - 1 \rangle , \mathbf { v } = \langle - 1,4 , - 4 \rangle

(Multiple Choice)
4.9/5
(36)

Find the volume of the parallelpiped with the given vertices. A(8,-5,-4),B(2,2,5),C(9,4,-12),D(3,11,-3) E(8,-6,-10),F(2,1,-1),G(9,3,-18),H(3,10,-9) )

(Multiple Choice)
4.8/5
(34)

Find the magnitude of the vector v\mathbf { v } . v=7,1,8\mathbf { v } = \langle - 7,1 , - 8 \rangle

(Multiple Choice)
5.0/5
(37)

Find the vector z\mathbf { z } , given u=5,8,2,v=6,2,9\mathbf { u } = \langle 5 , - 8,2 \rangle , \mathbf { v } = \langle - 6 , - 2,9 \rangle , and w=13,34,10\mathbf { w } = \langle - 13,34 , - 10 \rangle . 3u2v2z=w- 3 \mathbf { u } - 2 \mathbf { v } - 2 \mathbf { z } = \mathbf { w }

(Multiple Choice)
4.8/5
(34)

Find the lengths of the sides of the right triangle whose vertices are located at the given points. Show that these lengths satisfy the Pythagorean Theorem. Show all of your work. (9,6,1),(8,3,2),(3,6,0)( - 9,6 , - 1 ) , ( - 8,3 , - 2 ) , ( 3,6,0 ) )

(Essay)
4.8/5
(37)

Write the component form of the vector described below. Initial point: (7,2,1)( - 7,2 , - 1 ) Terminal point: (5,9,6)( - 5 , - 9 , - 6 )

(Multiple Choice)
4.8/5
(31)

Find the magnitude of the vector v\mathbf { v } . v=0,4,4\mathbf { v } = \langle 0 , - 4 , - 4 \rangle

(Multiple Choice)
4.9/5
(34)

Find the dot product of u\mathbf { u } and v\mathbf { v } . u=9i5j9k,v=2i+6j+5k\mathbf { u } = 9 \mathbf { i } - 5 \mathbf { j } - 9 \mathbf { k } , \mathbf { v } = - 2 \mathbf { i } + 6 \mathbf { j } + 5 \mathbf { k }

(Multiple Choice)
4.7/5
(41)

Find the triple scalar product u(v×w)\mathbf { u } \cdot ( \mathbf { v } \times \mathbf { w } ) for the vectors u=3,5,8,v=1,6,3,w=8,7,6\mathbf { u } = \langle - 3 , - 5 , - 8 \rangle , \mathbf { v } = \langle - 1 , - 6,3 \rangle , \mathbf { w } = \langle - 8 , - 7,6 \rangle

(Multiple Choice)
4.9/5
(42)

Find the general form of the equation of the plane with the given characteristics. The plane passes through the point (3,6,2)( - 3,6 , - 2 ) and is parallel to the yzy z -plane

(Multiple Choice)
4.9/5
(37)

Find the coordinates of the point located three units in front of the yzy z -plane, eight units to the right of the xzx z -plane, and five units above the xyx y -plane.

(Multiple Choice)
4.8/5
(35)

Find the coordinates of the point located four units in front of the yzy z -plane, nine units to the right of the xzx z -plane, and three units below the xyx y -plane.

(Multiple Choice)
4.8/5
(36)

Find symmetric equations for the line through the point and parallel to the specified line. Show all your work. x=8+7tx=-8+7 t (5,3,3), parallel to y=7+3t(-5,-3,3) \text {, parallel to } y=7+3 t z=95tz=-9-5 t

(Essay)
4.9/5
(32)

Find the general form of the equation of the plane passing through the point and perpendicular to the specified line. x=1+5tx = - 1 + 5 t (6,8,9),y=3+t( 6 , - 8,9 ) , \quad y = - 3 + t z=26tz = - 2 - 6 t

(Multiple Choice)
4.9/5
(32)
Showing 1 - 20 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)