Exam 7: Linear Systems and Matrices

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the equation of the parabola y=ax2+bx+cy = a x ^ { 2 } + b x + c that passes through the points. (3,9),(2,7),(1,7)( - 3,9 ) , ( - 2,7 ) , ( - 1,7 )

(Multiple Choice)
4.9/5
(40)

Write the system of linear equations as a matrix equation AX=BA X = B , and use Gauss-Jordan elimination on the augmented matrix [AB][ A \vdots B ] to solve for the matrix XX . {x13x29x3=43x1+4x2+7x3=517x17x2+3x3=57\left\{ \begin{aligned}x _ { 1 } - 3 x _ { 2 } - 9 x _ { 3 } & = 43 \\x _ { 1 } + 4 x _ { 2 } + 7 x _ { 3 } & = - 51 \\7 x _ { 1 } - 7 x _ { 2 } + 3 x _ { 3 } & = - 57\end{aligned} \right.

(Multiple Choice)
4.9/5
(36)

Solve for XX in the equation given. 16A+12B=4X,A=[563254] and B=[581395]16 A + 12 B = - 4 X , A = \left[ \begin{array} { c c c } 5 & 6 & 3 \\- 2 & 5 & - 4\end{array} \right] \text { and } B = \left[ \begin{array} { c c c } - 5 & 8 & - 1 \\- 3 & - 9 & - 5\end{array} \right]

(Multiple Choice)
4.8/5
(35)

Match the system of linear equations with its graph. {3x+6y12=015x5y10=0\left\{ \begin{array} { r } 3 x + 6 y - 12 = 0 \\15 x - 5 y - 10 = 0\end{array} \right.

(Multiple Choice)
4.9/5
(37)

An object moving vertically is at the given heights at the specified times. Find the position equation s=12at2+vot+sos = \frac { 1 } { 2 } a t ^ { 2 } + v _ { o } t + s _ { o } for the object. At t=1t = 1 second, s=273s = 273 feet At t=2t = 2 seconds, s=241s = 241 feet At t=3t = 3 seconds, s=177s = 177 feet

(Multiple Choice)
4.8/5
(29)

Write the system of linear equations represented by the augmented matrix. Then use back-substitution to solve. (Use variables x, y, and z.) [14323014190015]\left[ \begin{array} { c c c : c } 1 & 4 & - 3 & - 23 \\0 & 1 & 4 & 19 \\0 & 0 & 1 & 5\end{array} \right]

(Multiple Choice)
4.9/5
(40)

Determine whether the system of linear equations is consistent or inconsistent. {x+9y=54x+36y=21\left\{ \begin{aligned}- x + 9 y & = 5 \\- 4 x + 36 y & = 21\end{aligned} \right.

(Multiple Choice)
4.8/5
(37)

Evaluate the expression. 29[521]+[481]\frac { 2 } { 9 } \left[ \begin{array} { l l l } 5 & - 2 & 1\end{array} \right] + \left[ \begin{array} { l l l } 4 & 8 & - 1\end{array} \right]

(Multiple Choice)
4.9/5
(43)

Determine whether the system of linear equations is consistent or inconsistent. {9x+6y=181x+54y=10\left\{ \begin{aligned}- 9 x + 6 y & = - 1 \\- 81 x + 54 y & = - 10\end{aligned} \right.

(Multiple Choice)
4.8/5
(39)

Write the system of linear equations as a matrix equation AX=BA X = B , and use Gauss-Jordan elimination on the augmented matrix [AB][ A \vdots B ] to solve for the matrix XX . {x1+6x2+9x3=447x1+2x2x3=548x1+3x2+6x3=26\left\{ \begin{aligned}x _ { 1 } + 6 x _ { 2 } + 9 x _ { 3 } & = - 44 \\- 7 x _ { 1 } + 2 x _ { 2 } - x _ { 3 } & = - 54 \\8 x _ { 1 } + 3 x _ { 2 } + 6 x _ { 3 } & = 26\end{aligned} \right.

(Multiple Choice)
4.8/5
(38)

Solve the system of equations. {1x4y1z=35x2y2z=51x5y+2z=3\left\{ \begin{array} { c } - \frac { 1 } { x } - \frac { 4 } { y } - \frac { 1 } { z } = - 3 \\- \frac { 5 } { x } - \frac { 2 } { y } - \frac { 2 } { z } = - 5 \\- \frac { 1 } { x } - \frac { 5 } { y } + \frac { 2 } { z } = - 3\end{array} \right.

(Multiple Choice)
4.8/5
(37)

Write the form of the partial fraction decomposition of the rational expression. Do not solve for the constants. x+9x(x2+3)2\frac { x + 9 } { x \left( x ^ { 2 } + 3 \right) ^ { 2 } }

(Multiple Choice)
4.9/5
(39)

Solve the system by the method of substitution. {x2+y2=6257x24y=0\left\{ \begin{aligned}x ^ { 2 } + y ^ { 2 } & = 625 \\7 x - 24 y & = 0\end{aligned} \right.

(Multiple Choice)
4.9/5
(39)

Write the partial fraction decomposition of the rational expression. x2x421x2100\frac { x ^ { 2 } } { x ^ { 4 } - 21 x ^ { 2 } - 100 }

(Multiple Choice)
4.9/5
(31)

If possible, find 3A+4B3 A + 4 B . A=[439325],B=[895021]A = \left[ \begin{array} { c c c } - 4 & 3 & 9 \\3 & - 2 & 5\end{array} \right] , B = \left[ \begin{array} { c c c } - 8 & 9 & 5 \\0 & 2 & 1\end{array} \right]

(Multiple Choice)
4.9/5
(30)

An object moving vertically is at the given heights at the specified times. Find the position equation s=12at2+vot+sos = \frac { 1 } { 2 } a t ^ { 2 } + v _ { o } t + s _ { o } for the object. At t=1t = 1 second, s=234s = 234 feet At t=2t = 2 seconds, s=202s = 202 feet At t=3t = 3 seconds, s=138s = 138 feet

(Multiple Choice)
4.8/5
(35)

Determine whether the two systems of linear equations yield the same solutions. If so, find the solutions using matrices. {x+y9z=67y+5z=31z=7\left\{ \begin{aligned} x + y - 9 z & = - 67 \\ y + 5 z & = 31 \\ z & = 7 \end{aligned} \right. {x9y+6z=76y9z=67z=7\left\{ \begin{aligned} x - 9 y + 6 z & = 76 \\ y - 9 z & = - 67 \\ z & = 7 \end{aligned} \right.

(Multiple Choice)
4.8/5
(36)

Solve the system by the method of elimination. {7x6y=738xy=52\left\{ \begin{array} { l } 7 x - 6 y = - 73 \\- 8 x - y = 52\end{array} \right.

(Multiple Choice)
4.9/5
(30)

Write the augmented matrix for the system of linear equations. {x8y+8z=98y9z=1x+z=7\left\{ \begin{array} { r } x - 8 y + 8 z = 9 \\8 y - 9 z = 1 \\x + z = 7\end{array} \right.

(Multiple Choice)
4.8/5
(32)

Solve system of equations by the method of substitution. {4x325y=04xy=0\left\{ \begin{aligned}4 x ^ { 3 } - 25 y & = 0 \\4 x - y & = 0\end{aligned} \right.

(Multiple Choice)
4.9/5
(38)
Showing 21 - 40 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)