Exam 11: Limits and an Introduction to Calculus

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find limx9x9x281\lim _ { x \rightarrow 9 ^ { - } } \frac { x - 9 } { x ^ { 2 } - 81 } .

(Multiple Choice)
4.8/5
(31)

Find the slope of the graph of the following function at the point (1, -3) . x22- x ^ { 2 } - 2

(Multiple Choice)
4.9/5
(39)

Find the derivative of f(x)=4x2+2x+3f ( x ) = 4 x ^ { 2 } + 2 x + 3 .

(Multiple Choice)
4.9/5
(40)

Find limx[x(5+x)2+7]\lim _ { x \rightarrow - \infty } \left[ \frac { x } { ( 5 + x ) ^ { 2 } } + 7 \right] (if it exists).

(Multiple Choice)
4.7/5
(43)

Estimate the following limit numerically, if it exists. limx1x1x2+5x6\lim _ { x \rightarrow 1 } \frac { x - 1 } { x ^ { 2 } + 5 x - 6 }

(Multiple Choice)
4.9/5
(37)

Find the following limit, if it exists. limx3x7\lim _ { x \rightarrow 3 } x ^ { 7 }

(Multiple Choice)
4.8/5
(35)

 Consider the graph of the function and approximate limx0sin(8x)x, if it exists. \text { Consider the graph of the function and approximate } \lim _ { x \rightarrow 0 } \frac { \sin ( - 8 x ) } { x } \text {, if it exists. } \text { Consider the graph of the function and approximate } \lim _ { x \rightarrow 0 } \frac { \sin ( - 8 x ) } { x } \text {, if it exists. }

(Multiple Choice)
4.8/5
(36)

Complete the table and numerically estimate the limit as xx approaches infinity for f(x)=xx2+4f ( x ) = x - \sqrt { x ^ { 2 } + 4 } . x 1 1 1 1 1 1 1 f(x)

(Multiple Choice)
4.7/5
(34)

Find the following limit. Round your answer to two decimals. limx3x2+72x2\lim _ { x \rightarrow 3 } \frac { \sqrt { x ^ { 2 } + 7 } } { 2 x ^ { 2 } }

(Multiple Choice)
4.8/5
(33)

Use the graph to determine limx0x2xx\lim _ { x \rightarrow 0 } \frac { x ^ { 2 } - x } { x } (if it exists).  Use the graph to determine  \lim _ { x \rightarrow 0 } \frac { x ^ { 2 } - x } { x }  (if it exists).

(Multiple Choice)
4.8/5
(37)

Find the following limit. limx43x2+3x+1\lim _ { x \rightarrow - 4 } 3 x ^ { 2 } + 3 x + 1

(Multiple Choice)
4.9/5
(31)

Find limx85xx+2\lim _ { x \rightarrow 8 } \frac { 5 x } { \sqrt { x + 2 } } by direct substitution.

(Multiple Choice)
4.9/5
(43)

Use the figure below to approximate the slope of the curve at the point (x,y)( x , y ) .  Use the figure below to approximate the slope of the curve at the point  ( x , y ) .

(Multiple Choice)
4.8/5
(36)

Find the following limit, if it exists. limx393x2x23+x\lim _ { x \rightarrow - 3 } \frac { 9 - 3 x - 2 x ^ { 2 } } { 3 + x }

(Multiple Choice)
4.8/5
(31)

Use the first six terms to predict the limit of the sequence an=5n3+8n+3a _ { n } = \frac { 5 n ^ { 3 } + 8 } { n + 3 } (assume nn begins with 1).

(Multiple Choice)
4.8/5
(38)

Use the function below and its derivative to determine any points on the graph of ff at which the tangent line is horizontal. f(x)=2x4+4x2,f(x)=8x3+8xf ( x ) = - 2 x ^ { 4 } + 4 x ^ { 2 } , f ^ { \prime } ( x ) = - 8 x ^ { 3 } + 8 x

(Multiple Choice)
4.8/5
(34)

Find limx[x(5+x)2+8]\lim _ { x \rightarrow - \infty } \left[ \frac { x } { ( 5 + x ) ^ { 2 } } + 8 \right] (if it exists).

(Multiple Choice)
4.8/5
(34)

Use the graph to find limx34x236x3\lim _ { x \rightarrow 3 } \frac { 4 x ^ { 2 } - 36 } { x - 3 } .  Use the graph to find  \lim _ { x \rightarrow 3 } \frac { 4 x ^ { 2 } - 36 } { x - 3 } .

(Multiple Choice)
4.8/5
(42)

Find limx3[g(x)f(x)]\lim _ { x \rightarrow 3 } [ g ( x ) - f ( x ) ] for f(x)=4x3f ( x ) = 4 x ^ { 3 } and g(x)=x2+95x2g ( x ) = \frac { \sqrt { x ^ { 2 } + 9 } } { 5 x ^ { 2 } } .

(Multiple Choice)
4.7/5
(43)

Use the limit process to find the slope of the graph of the following function at the point (5,27)( 5 , - 27 ) . g(x)=74xg ( x ) = - 7 - 4 x

(Multiple Choice)
4.8/5
(44)
Showing 21 - 40 of 40
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)