Exam 12: Review of Graphs, Equations, and Inequalities

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find limx6x+7x2\lim _ { x \rightarrow 6 } \frac { \sqrt { x + 7 } } { x - 2 } by direct substitution.

(Multiple Choice)
4.7/5
(36)

Sketch the graph of the equation y=2x3+2y = 2 | x - 3 | + 2 .

(Multiple Choice)
5.0/5
(32)

Use the graph below to find limx4x+4x+4\lim _ { x \rightarrow - 4 } \frac { | x + 4 | } { x + 4 } , if it exists.  Use the graph below to find  \lim _ { x \rightarrow - 4 } \frac { | x + 4 | } { x + 4 } , if it exists.

(Multiple Choice)
4.8/5
(31)

The average salary (in thousands of dollars) at a certain company for the first ten years of its existence can be approximated by the model S=0.2t2+2.1t+32.5,0t10S = 0.2 t ^ { 2 } + 2.1 t + 32.5,0 \leq t \leq 10 . How many years did it take for the average salary to reach $41,000\$ 41,000 ? Round the answer to the nearest hundredth of a year.

(Multiple Choice)
4.8/5
(34)

Use the limit process to find the slope of the graph of x+12\sqrt { x + 12 } at (4,4)( 4,4 ) .

(Multiple Choice)
5.0/5
(34)

Use the figure below to approximate the slope of the curve at the point (x,y)( x , y ) .  Use the figure below to approximate the slope of the curve at the point  ( x , y ) .

(Multiple Choice)
4.8/5
(33)

Determine any points on the graph of the following function at which the tangent line is horizontal. f(x)=x2+6x8f ( x ) = x ^ { 2 } + 6 x - 8

(Multiple Choice)
4.9/5
(42)

Approximate the area of the region under the function below on the interval [0,2][ 0,2 ] using 8 rectangles. Round your answer to two decimals. f(x)=13x4f ( x ) = \frac { 1 } { 3 } x ^ { 4 }

(Multiple Choice)
4.8/5
(31)

Find limx0xx+33\lim _ { x \rightarrow 0 ^ { - } } \frac { x } { \sqrt { x + 3 } - \sqrt { 3 } }

(Multiple Choice)
4.7/5
(27)

Use the limit process to find the area of the region between f(x)=18(x2+8x)f ( x ) = \frac { 1 } { 8 } \left( x ^ { 2 } + 8 x \right) and the xx -axis on the interval [1,8][ 1,8 ] .

(Multiple Choice)
4.9/5
(41)

Use the graph to find limx34x236x3\lim _ { x \rightarrow 3 } \frac { 4 x ^ { 2 } - 36 } { x - 3 } .  Use the graph to find  \lim _ { x \rightarrow 3 } \frac { 4 x ^ { 2 } - 36 } { x - 3 } .

(Multiple Choice)
4.9/5
(38)

Consider the following graph of the function and approximate limx0e2x1x\lim _ { x \rightarrow 0 } \frac { e ^ { - 2 x } - 1 } { x } , if it exists.  Consider the following graph of the function and approximate  \lim _ { x \rightarrow 0 } \frac { e ^ { - 2 x } - 1 } { x } , if it exists.

(Multiple Choice)
4.9/5
(35)

Find the following limit, if it exists. limx2x8\lim _ { x \rightarrow - 2 } x ^ { 8 }

(Multiple Choice)
4.9/5
(34)

Find limx7x+3x3\lim _ { x \rightarrow 7 } \frac { \sqrt { x + 3 } } { x - 3 } by direct substitution.

(Multiple Choice)
4.9/5
(31)

Find limx65x\lim _ { x \rightarrow \infty } \frac { 6 } { 5 x } (if it exists).

(Multiple Choice)
4.9/5
(33)

Approximate the area of the indicated region under the given curve using five rectangles. f(x)=5x2f ( x ) = 5 - x ^ { 2 }  Approximate the area of the indicated region under the given curve using five rectangles.  f ( x ) = 5 - x ^ { 2 }

(Multiple Choice)
4.7/5
(38)

Find all solutions of the equation x3+3x210x30=0x ^ { 3 } + 3 x ^ { 2 } - 10 x - 30 = 0

(Multiple Choice)
4.9/5
(29)

Find limx3[g(x)f(x)]\lim _ { x \rightarrow 3 } [ g ( x ) - f ( x ) ] for f(x)=3x3f ( x ) = 3 x ^ { 3 } and g(x)=x2+26x2g ( x ) = \frac { \sqrt { x ^ { 2 } + 2 } } { 6 x ^ { 2 } } .

(Multiple Choice)
4.9/5
(40)

Find the coordinates of the point that is located 8 units below the xx -axis and 5 units to the left of the y-axis.

(Multiple Choice)
4.7/5
(27)

Determine any points on the graph of the following function at which the tangent line is horizontal. f(x)=x2+8x8f ( x ) = x ^ { 2 } + 8 x - 8

(Multiple Choice)
4.9/5
(32)
Showing 61 - 80 of 99
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)