Exam 10: Characteristics of Functions and Their Graphs

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Determine the maximum possible number of turning points for the graph of the function. - f(x)=x2+6x3f ( x ) = x ^ { 2 } + 6 x ^ { 3 }

(Multiple Choice)
4.7/5
(32)

Use the Intermediate Value Theorem to determine if a real zero of f(x)occurs in the given interval. If this cannot be determined, indicate so. - f(x)=x2+8x2 in (0,1)f ( x ) = x ^ { 2 } + 8 x - 2 \text { in } ( 0,1 )

(Multiple Choice)
4.9/5
(37)

Use the Boundedness Theorem to determine if the zeros of f(x)are bounded over the given interval. If this cannot be determined, indicate so. - f(x)=4x24x1 in [1,2]f ( x ) = 4 x ^ { 2 } - 4 x - 1 \text { in } [ - 1,2 ]

(Multiple Choice)
4.8/5
(32)

Determine whether the graph of the rational function has a horizontal asymptote, an oblique asymptote, or neither. Give the equation of the asymptote if it exists. - f(x)=5x26x56x27x+4f ( x ) = \frac { 5 x ^ { 2 } - 6 x - 5 } { 6 x ^ { 2 } - 7 x + 4 }

(Multiple Choice)
4.8/5
(30)

Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of discontinuity. - f(x)=3x2f ( x ) = 3 ^ { x } - 2

(Multiple Choice)
4.8/5
(32)

Determine the maximum possible number of turning points for the graph of the function. - f(x)=(x+2)(x4)(4x6)f ( x ) = ( x + 2 ) ( x - 4 ) ( 4 x - 6 )

(Multiple Choice)
4.9/5
(27)

Find all points of discontinuity, and determine whether there is a hole or a vertical asymptote at each point. - f(x)=x9x2+4f ( x ) = \frac { x - 9 } { x ^ { 2 } + 4 }

(Multiple Choice)
4.8/5
(30)

Determine whether the graph of the rational function has a horizontal asymptote, an oblique asymptote, or neither. Give the equation of the asymptote if it exists. - f(x)=8x2116x31f ( x ) = \frac { 8 x ^ { 2 } - 1 } { 16 x ^ { 3 } - 1 }

(Multiple Choice)
4.9/5
(37)

Solve the problem. -Given R(x)=x3+7x22xR ( x ) = x ^ { 3 } + 7 x ^ { 2 } - 2 x and C(x)=2x2+24C ( x ) = 2 x ^ { 2 } + 24 where xx represents the number of items produced in hundreds, R(x)R( \mathrm { x } ) and C(x)\mathrm { C } ( \mathrm { x } ) represent revenue and cost in thousands of dollars. where x represents the number of items produced in hundreds, R(x) a)Find P(x). b)Find P(0), R(0), and C(0)and interpret each of these. c)Find the break-even point (value wherehere P(x)=0) if 0<x<4P ( x ) = 0 ) \text { if } 0 < x < 4 \text {. } d)For what values of x ist values of x is P(x)>0 if 0<x<4?\mathrm { P } ( \mathrm { x } ) > 0 \text { if } 0 < x < 4 ? e)For what values of x ist values of x is P(x)<0 if 0<x<4?P ( x ) < 0 \text { if } 0 < x < 4 ? f)Interpret the results from parts d)and e).

(Essay)
4.9/5
(35)

Solve the problem. -Sam Wright wants to stock up on cans of cat food which are selling for $0.95 per can. Write a greatest integer function that represents the number of cans he can purchase with x dollars.

(Multiple Choice)
4.8/5
(31)

Find all points of discontinuity, and determine whether there is a hole or a vertical asymptote at each point. - f(x)=x2+16x+63x2+15x+56f ( x ) = \frac { x ^ { 2 } + 16 x + 63 } { x ^ { 2 } + 15 x + 56 }

(Multiple Choice)
5.0/5
(37)

Find all real zeros (estimate the irrational zeros to the nearest hundredth). - f(x)=3x318x2+5x30f ( x ) = 3 x ^ { 3 } - 18 x ^ { 2 } + 5 x - 30

(Multiple Choice)
4.9/5
(31)

Use the Boundedness Theorem to determine if the zeros of f(x)are bounded over the given interval. If this cannot be determined, indicate so. - f(x)=x33x25x+18 in [3,3]f ( x ) = x ^ { 3 } - 3 x ^ { 2 } - 5 x + 18 \text { in } [ - 3,3 ]

(Multiple Choice)
4.8/5
(36)

Find the real zeros of the function, state their multiplicities if it is a number other than 1. - f(x)=5(x+3)(x+7)4f ( x ) = 5 ( x + 3 ) ( x + 7 ) ^ { 4 }

(Multiple Choice)
4.8/5
(43)

Graph the polynomial function. - f(x)=x3+2x2+x6f ( x ) = x ^ { 3 } + 2 x ^ { 2 } + x - 6  Graph the polynomial function. - f ( x ) = x ^ { 3 } + 2 x ^ { 2 } + x - 6

(Multiple Choice)
4.8/5
(38)

Find all points of discontinuity, and determine whether there is a hole or a vertical asymptote at each point. - f(x)=x8x216f ( x ) = \frac { x - 8 } { x ^ { 2 } - 16 }

(Multiple Choice)
4.8/5
(36)

Determine the minimum degree of the polynomial function graphed. - f(x)=(x4)(x2)(x+1)(x+2)f ( x ) = ( x - 4 ) ( x - 2 ) ( x + 1 ) ( x + 2 )  Determine the minimum degree of the polynomial function graphed. - f ( x ) = ( x - 4 ) ( x - 2 ) ( x + 1 ) ( x + 2 )

(Multiple Choice)
4.8/5
(42)

Find all the zeros (real and complex)of the function. - f(x)=x3+2x26x+8f ( x ) = x ^ { 3 } + 2 x ^ { 2 } - 6 x + 8

(Multiple Choice)
4.7/5
(34)

Classify the function as continuous or discontinuous. -Classify the function as continuous or discontinuous. -

(Multiple Choice)
4.9/5
(32)

Find the x-intercepts of the function. - f(x)=4x244f ( x ) = 4 x ^ { 2 } - 44

(Multiple Choice)
4.9/5
(31)
Showing 41 - 60 of 142
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)