Exam 10: Characteristics of Functions and Their Graphs

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the x-intercepts of the function. - f(x)=x24x+3f ( x ) = x ^ { 2 } - 4 x + 3

(Multiple Choice)
4.8/5
(33)

Determine the maximum possible number of turning points for the graph of the function. - f(x)=5x74x66x14f ( x ) = 5 x ^ { 7 } - 4 x ^ { 6 } - 6 x - 14

(Multiple Choice)
4.7/5
(28)

Find all real zeros (estimate the irrational zeros to the nearest hundredth). - f(x)=x4+7x37x263x18f ( x ) = x ^ { 4 } + 7 x ^ { 3 } - 7 x ^ { 2 } - 63 x - 18

(Multiple Choice)
4.8/5
(34)

Use Descartes' Rule of Signs to determine the possible number of positive and negative real zeros for the polynomial function. - f(x)=4x58x44x3+3x2+x+16f ( x ) = - 4 x ^ { 5 } - 8 x ^ { 4 } - 4 x ^ { 3 } + 3 x ^ { 2 } + x + 16

(Multiple Choice)
4.9/5
(33)

Graph the rational function. - f(x)=214xf ( x ) = \frac { 2 } { 1 - 4 x }  Graph the rational function. - f ( x ) = \frac { 2 } { 1 - 4 x }

(Multiple Choice)
4.9/5
(39)

Find the real zeros of the function, state their multiplicities if it is a number other than 1. - f(x)=x2(x24)(x2+36)f ( x ) = x ^ { 2 } \left( x ^ { 2 } - 4 \right) \left( x ^ { 2 } + 36 \right)

(Multiple Choice)
4.9/5
(37)

Graph the rational function. - f(x)=5x45x+10f ( x ) = \frac { 5 x - 4 } { 5 x + 10 }  Graph the rational function. - f ( x ) = \frac { 5 x - 4 } { 5 x + 10 }

(Multiple Choice)
4.8/5
(38)

Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of discontinuity. - f(x)=log4(x+2)f ( x ) = \log _ { 4 } ( x + 2 )

(Multiple Choice)
4.8/5
(42)

Graph the piecewise function. - g(x)={x1 if x<22x2 if x>2g ( x ) = \left\{ \begin{array} { l l } - x - 1 & \text { if } x < - 2 \\- 2 x - 2 & \text { if } x > - 2\end{array} \right.  Graph the piecewise function. - g ( x ) = \left\{ \begin{array} { l l }  - x - 1 & \text { if } x < - 2 \\ - 2 x - 2 & \text { if } x > - 2 \end{array} \right.

(Multiple Choice)
4.8/5
(39)

Identify the local maximum and minimum of the graphed function. -Identify the local maximum and minimum of the graphed function. -

(Multiple Choice)
4.7/5
(41)

Classify the function as continuous or discontinuous. -Classify the function as continuous or discontinuous. -

(Multiple Choice)
4.8/5
(42)

Determine whether the function is an even function, an odd function, or neither. - f(x)=2x2+x4f ( x ) = 2 x ^ { 2 } + x ^ { 4 }

(Multiple Choice)
4.9/5
(29)

Describe the location, either above the x-axis or below the x-axis, of the graph of the function for large positive values of x and for large negative values of x. - f(x)=x5+x4+x3+x2+x3f ( x ) = x ^ { 5 } + x ^ { 4 } + x ^ { 3 } + x ^ { 2 } + x - 3

(Multiple Choice)
4.8/5
(47)

Determine the minimum degree of the polynomial function graphed. - f(x)=3x(x2)2f ( x ) = - 3 x ( x - 2 ) ^ { 2 }  Determine the minimum degree of the polynomial function graphed. - f ( x ) = - 3 x ( x - 2 ) ^ { 2 }

(Multiple Choice)
4.9/5
(32)

Use the Boundedness Theorem to determine if the zeros of f(x)are bounded over the given interval. If this cannot be determined, indicate so. - f(x)=x5+2x44x3+x2+17x5 in [1,2]f ( x ) = x ^ { 5 } + 2 x ^ { 4 } - 4 x ^ { 3 } + x ^ { 2 } + 17 x - 5 \text { in } [ - 1,2 ]

(Multiple Choice)
4.9/5
(38)

Graph the piecewise function. - f(x)={1 if x1x+3 if x<1f ( x ) = \left\{ \begin{array} { l l } 1 & \text { if } x \geq 1 \\x + 3 & \text { if } x < 1\end{array} \right.  Graph the piecewise function. - f ( x ) = \left\{ \begin{array} { l l }  1 & \text { if } x \geq 1 \\ x + 3 & \text { if } x < 1 \end{array} \right.

(Multiple Choice)
4.7/5
(32)

Determine which of the given graphs could be the graph of the given polynomial function. - P(x)=6x33x2+3x2P ( x ) = - 6 x ^ { 3 } - 3 x ^ { 2 } + 3 x - 2

(Multiple Choice)
4.8/5
(32)

Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of discontinuity. - f(x)=5x+2x2+4f ( x ) = \frac { 5 x + 2 } { x ^ { 2 } + 4 }

(Multiple Choice)
4.8/5
(29)

Find the x-intercepts of the function. - f(x)=2(x+4)(x5)3f ( x ) = 2 ( x + 4 ) ( x - 5 ) ^ { 3 }

(Multiple Choice)
4.9/5
(31)

Classify the function as continuous or discontinuous. If the function is not continuous, identify the point(s)of discontinuity. - f(x)=6(x+3)2f ( x ) = 6 ( x + 3 ) ^ { 2 }

(Multiple Choice)
4.8/5
(38)
Showing 81 - 100 of 142
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)