Exam 15: Systems of Equations: Matrices and Determinants

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the system by the substitution or elimination method. (4x2+9y2=252x+3y=7)\left( \begin{array} { r l } 4 x ^ { 2 } + 9 y ^ { 2 } & = 25 \\2 x + 3 y & = 7\end{array} \right) Express your answer as an ordered pair. If there is more than one solution, separate your answers with a comma.

(Short Answer)
4.7/5
(34)

Use Cramer s rule to find the solution set for the system. (3x3y=12x=1)\left( \begin{array} { r l l } 3 x - 3 y & = & 12 \\x & = & - 1\end{array} \right) If the equations of the system are dependent, or if a system is inconsistent, so indicate. In those cases enter dependent or inconsistent . Otherwise, enter your answer in the form ( x , y ).

(Short Answer)
4.9/5
(32)

Use a matrix approach to solve the system. (x4y=114x+3y=32)\left( \begin{array} { c c c c } x - 4 y & = & 11 \\4 x + 3 y & = & - 32\end{array} \right)

(Multiple Choice)
4.9/5
(41)

Solve the system. (x5y+2z=242x+2y+4z=122x2y3z=4)\left(\begin{array}{llll}x&-&5 y&+&2 z & = & 24 \\2 x&+&2 y&+&4 z & = & 12 \\2 x&-&2 y&-&3 z & = & -4\end{array}\right)

(Multiple Choice)
4.8/5
(34)

Solve the system by the substitution or elimination method. (9x2+4y2=253x+2y=7)\left( \begin{array} { r l } 9 x ^ { 2 } + 4 y ^ { 2 } & = 25 \\3 x + 2 y & = 7\end{array} \right)

(Multiple Choice)
4.7/5
(34)

Solve the problem by using a system of equations. The sum of the digits of a two-digit number is 7. If the digits are reversed, the newly formed number is 45 larger than the original number. Find the original number.

(Short Answer)
4.9/5
(37)

Indicate whether the matrix is in reduced echelon form. [1000001001000001]21093]\left. \left[ \begin{array} { l l l l } 1 & 0 & 0 & 0 \\0 & 0 & 1 & 0 \\0 & 1 & 0 & 0 \\0 & 0 & 0 & 1\end{array} \right] \quad \begin{array} { r } - 2 \\10\\-9\\-3\end{array} \right] Enter yes or no .

(Short Answer)
4.9/5
(34)

Use the appropriate property of determinants from this section to justify the true statement. 79158124761=71598412716\left| \begin{array} { c c c } 7 & 9 & 15 \\8 & - 12 & 4 \\7 & 6 & - 1\end{array} \right| = - \left| \begin{array} { c c c } 7 & 15 & 9 \\8 & 4 & - 12 \\7 & - 1 & 6\end{array} \right| Do not evaluate the determinants. Property number 1: If any row (or column) of a square matrix A contains only zeros, then | A | = 0. Property number 2: If square matrix B is obtained from square matrix A by interchanging two rows (or two columns), then | B | = - | A |. Property number 3: If square matrix B is obtained from square matrix A by multiplying each element of any row (or column) of A by some real number k , then | B | = k | A |. Property number 4: If square matrix B is obtained from square matrix A by adding k times a row (or column) of A to another row (or column) of A , then | B | = | A |. Property number 5: If two rows (or columns) of a square matrix A are identical, then | A | = 0. Enter property number only.

(Short Answer)
4.9/5
(46)

Cramer's rule is a method of solving a system of equations by using determinants.

(True/False)
4.8/5
(37)

Solve the system. (5x+5y3z=142y+4z=203y2z=6)\left( \begin{array} { r l } 5 x& + &5 y &- &3 z & =& - 14 \\&&2 y &+& 4 z & = &20 \\&&3 y &- &2 z & =& 6\end{array} \right)

(Short Answer)
4.7/5
(31)

Solve the system by the substitution or elimination method. (y=x2+3x2y=x2+5x+6)\left( \begin{array} { l } y = x ^ { 2 } + 3 x - 2 \\y = x ^ { 2 } + 5 x + 6\end{array} \right) Express your answer as an ordered pair. If there is more than one solution, separate your answers with a comma.

(Short Answer)
4.8/5
(34)

Use a matrix approach to solve the system. (x3y6z=206x+7yz=455x+y+5z=11)\left( \begin{array} { r l } x - 3 y - 6 z & = - 20 \\6 x + 7 y - z & = - 45 \\5 x + y + 5 z & = 11\end{array} \right) If a system is inconsistent, so indicate. In those cases enter inconsistent .

(Short Answer)
4.7/5
(38)

Give a step-by-step description of how you would solve the system. (2xy+3z=10x2yz=43x+5y+8z=12)\left( \begin{array} { c } 2 x - y + 3 z = 10 \\x - 2 y - z = 4 \\3 x + 5 y + 8 z = 12\end{array} \right)

(Short Answer)
4.7/5
(38)

To solve the system (2xy+3z=52y+z=34z=8)\left( \begin{array} { r } 2 x - y + 3 z = 5 \\2 y + z = 3 \\4 z = 8\end{array} \right) , solve the equation 4z=84 z = 8 first.

(True/False)
4.9/5
(30)

Use Cramer s rule to find the solution set for the system. (2x+2y=2x=3)\left( \begin{array} { r l l } 2 x + 2 y & = 2 \\x & = 3\end{array} \right)

(Multiple Choice)
4.9/5
(31)

Use the appropriate property of determinants from this section to justify the true statement. 69118103651=61198310615\left| \begin{array} { c c c } 6 & 9 & 11 \\8 & - 10 & 3 \\6 & 5 & - 1\end{array} \right| = - \left| \begin{array} { c c c } 6 & 11 & 9 \\8 & 3 & - 10 \\6 & - 1 & 5\end{array} \right| Do not evaluate the determinants.

(Multiple Choice)
4.9/5
(41)

Solve the system by the substitution or elimination method. (y=x2+6x+y=7)\left( \begin{array} { l } y& = &- x ^ { 2 } &+ &6 \\x &+& y &= &7\end{array} \right)

(Multiple Choice)
4.8/5
(44)

Solve the system. (4x+3yz=83x5y=124x+5y=19)\left( \begin{array} { rrrrrr } 4 x &+ &3 y& -& z & = &- 8 \\&&3 x &-& 5 y & = &12 \\&&4 x &+& 5 y & = & - 19\end{array} \right)

(Multiple Choice)
4.9/5
(38)

The matrix is the reduced echelon matrix for a system with variables x 1 , x 2 , x 3 , and x 4 . Find the solution set of the system. [160010001050001900000]\left[ \begin{array} { r r r r | r } 1 & 6 & 0 & 0 & 10 \\0 & 0 & 1 & 0 & - 5 \\0 & 0 & 0 & 1 & 9 \\0 & 0 & 0 & 0 & 0\end{array} \right] If a system is inconsistent, so indicate.

(Short Answer)
4.9/5
(26)

Solve the homogeneous system. (4x+y+z=0xy+3z=05x5y3z=0)\left( \begin{array} { r } 4 x + y + z = 0 \\x - y + 3 z = 0 \\5 x - 5 y - 3 z = 0\end{array} \right) If the equations of the system are dependent, or if a system is inconsistent, so indicate. In those cases enter dependent or inconsistent .

(Short Answer)
4.9/5
(35)
Showing 141 - 160 of 228
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)