Exam 3: Protein Structure and Function
Exam 1: Biology and the Tree of Life40 Questions
Exam 2: Water and Carbon: the Chemical Basis of Life50 Questions
Exam 3: Protein Structure and Function47 Questions
Exam 4: Nucleic Acids and the Rna World33 Questions
Exam 5: An Introduction to Carbohydrates30 Questions
Exam 6: Lipids, membranes, and the First Cells47 Questions
Exam 7: Inside the Cell28 Questions
Exam 8: Cell-Cell Interactions27 Questions
Exam 9: Cellular Respiration and Fermentation27 Questions
Exam 10: Photosynthesis32 Questions
Exam 11: The Cell Cycle31 Questions
Exam 12: Meiosis34 Questions
Exam 13: Mendel and the Gene32 Questions
Exam 14: Dna and the Gene: Synthesis and Repair37 Questions
Exam 15: How Genes Work34 Questions
Exam 16: Transcription and Translation38 Questions
Exam 17: Control of Gene Expression in Bacteria31 Questions
Exam 18: Control of Gene Expression in Eukaryotes37 Questions
Exam 19: Analyzing and Engineering Genes40 Questions
Exam 20: Genomics38 Questions
Exam 21: Principles of Development25 Questions
Exam 22: An Introduction to Animal Development22 Questions
Exam 23: An Introduction to Plant Development21 Questions
Exam 24: Evolution by Natural Selection32 Questions
Exam 25: Evolutionary Processes32 Questions
Exam 26: Speciation33 Questions
Exam 27: Phylogenies and the History of Life38 Questions
Exam 28: Bacteria and Archaea38 Questions
Exam 29: Protists34 Questions
Exam 30: Green Plants49 Questions
Exam 31: Fungi37 Questions
Exam 32: An Introduction to Animals38 Questions
Exam 33: Protostome Animals38 Questions
Exam 34: Deuterostome Animals46 Questions
Exam 35: Viruses31 Questions
Exam 36: Plant Form and Function39 Questions
Exam 37: Water and Sugar Transport in Plants42 Questions
Exam 38: Plant Nutrition36 Questions
Exam 39: Plant Sensory Systems, signals, and Responses66 Questions
Exam 40: Plant Reproduction41 Questions
Exam 41: Animal Form and Function29 Questions
Exam 42: Water and Electrolyte Balance in Animals38 Questions
Exam 43: Animal Nutrition37 Questions
Exam 44: Gas Exchange and Circulation37 Questions
Exam 45: Electrical Signals in Animals33 Questions
Exam 46: Animal Sensory Systems and Movement36 Questions
Exam 47: Chemical Signals in Animals33 Questions
Exam 48: Animal Reproduction34 Questions
Exam 49: The Immune System in Animals32 Questions
Exam 50: An Introduction to Ecology38 Questions
Exam 51: Behavioral Ecology37 Questions
Exam 52: Population Ecology46 Questions
Exam 53: Community Ecology39 Questions
Exam 54: Ecosystems41 Questions
Exam 55: Biodiversity and Conservation Biology39 Questions
Select questions type
You've discovered an enzyme that can catalyze two different chemical reactions.Which of the following is most likely to be correct?
(Multiple Choice)
4.8/5
(44)
In solution,why do hydrolysis reactions occur more readily than condensation reactions?
(Multiple Choice)
4.8/5
(41)
What is the process component of the theory of chemical evolution?
(Multiple Choice)
4.8/5
(38)
You determine the amino acid sequence of a protein and find it contains a long sequence of methionine,followed by a long sequence of proline,followed by a long sequence of valine.Using these data you predict the sequence of this protein's secondary structure will be _____.
(Multiple Choice)
4.8/5
(28)
You have isolated a previously unstudied protein,identified its complete structure in detail,and determined that it catalyzes the breakdown of a large substrate.You notice it has two binding sites.One of these is large,apparently the bonding site for the large substrate;the other is small,possibly a binding site for a regulatory molecule.What do these findings tell you about the mechanism of this protein?
(Multiple Choice)
4.8/5
(43)
How does primary protein structure affect the function of protein enzymes?
(Multiple Choice)
4.8/5
(42)
In interstellar space,millions of ice-encrusted dust particles contain simple carbon-containing compounds.When particles like these are exposed to solar radiation,more complex organic molecules form on the surfaces of the dust.What is the significance of these findings?
(Multiple Choice)
4.9/5
(38)
Suppose that Miller repeated his chemical evolution experiment but without a source of electrical sparks.What would be the purpose?
(Multiple Choice)
4.9/5
(37)
You are studying a protein that is shaped like a doughnut.The shape is a function of which level(s)of protein structure?
(Multiple Choice)
4.9/5
(40)
Refer to the following paragraph and Figure 3.1 to answer the following questions.
Figure 3.1
Since structure correlates so well with function,biochemists are constantly looking for new ways to probe the complex structure of proteins in order to understand what they do and how they do it.One of the most powerful techniques in existence today is X-ray crystallography.The main difficulty with this technique is getting the protein to crystallize.Once crystallized,the protein is bombarded with X-rays to create a pattern that can be analyzed mathematically to determine the three-dimensional structure of the protein.This analysis has been performed by Krzysztof Palczewski on the protein rhodopsin,which is a light-sensitive protein found in species ranging from ancient bacteria (archaea)to humans.The structure (schematically shown above,where each letter represents an amino acid)is characterized by a single polypeptide chain with several α-helical segments that loop back and forth across the cell membrane.Another notable feature is the disulfide bond (-S-S-)that can be seen at the bottom of the third transmembrane segment.[Figure adapted from K.Palczewski et al. ,Science 289 (2000): 739.]
-Which term best describes the type of membrane protein in Figure 3.1?
![Refer to the following paragraph and Figure 3.1 to answer the following questions. Figure 3.1 Since structure correlates so well with function,biochemists are constantly looking for new ways to probe the complex structure of proteins in order to understand what they do and how they do it.One of the most powerful techniques in existence today is X-ray crystallography.The main difficulty with this technique is getting the protein to crystallize.Once crystallized,the protein is bombarded with X-rays to create a pattern that can be analyzed mathematically to determine the three-dimensional structure of the protein.This analysis has been performed by Krzysztof Palczewski on the protein rhodopsin,which is a light-sensitive protein found in species ranging from ancient bacteria (archaea)to humans.The structure (schematically shown above,where each letter represents an amino acid)is characterized by a single polypeptide chain with several α-helical segments that loop back and forth across the cell membrane.Another notable feature is the disulfide bond (-S-S-)that can be seen at the bottom of the third transmembrane segment.[Figure adapted from K.Palczewski et al. ,Science 289 (2000): 739.] -Which term best describes the type of membrane protein in Figure 3.1?](https://storage.examlex.com/TB3734/11ea48b8_22eb_9c66_b057_b92d39768e23_TB3734_00_TB3734_00_TB3734_00_TB3734_00_TB3734_00_TB3734_00.jpg)
(Multiple Choice)
4.9/5
(45)
Consider the HIV enzyme called protease.The amino acid residues at the active site are highly hydrophobic.In designing a drug that would bind to the active site and jam it,researchers should use which type of molecule?
(Multiple Choice)
4.9/5
(41)
Refer to the following paragraph and Figure 3.1 to answer the following questions.
Figure 3.1
Since structure correlates so well with function,biochemists are constantly looking for new ways to probe the complex structure of proteins in order to understand what they do and how they do it.One of the most powerful techniques in existence today is X-ray crystallography.The main difficulty with this technique is getting the protein to crystallize.Once crystallized,the protein is bombarded with X-rays to create a pattern that can be analyzed mathematically to determine the three-dimensional structure of the protein.This analysis has been performed by Krzysztof Palczewski on the protein rhodopsin,which is a light-sensitive protein found in species ranging from ancient bacteria (archaea)to humans.The structure (schematically shown above,where each letter represents an amino acid)is characterized by a single polypeptide chain with several α-helical segments that loop back and forth across the cell membrane.Another notable feature is the disulfide bond (-S-S-)that can be seen at the bottom of the third transmembrane segment.[Figure adapted from K.Palczewski et al. ,Science 289 (2000): 739.]
-If you were reading off the sequence of amino acids in Figure 3.1 to a biologist friend,what should the first three letters be?
![Refer to the following paragraph and Figure 3.1 to answer the following questions. Figure 3.1 Since structure correlates so well with function,biochemists are constantly looking for new ways to probe the complex structure of proteins in order to understand what they do and how they do it.One of the most powerful techniques in existence today is X-ray crystallography.The main difficulty with this technique is getting the protein to crystallize.Once crystallized,the protein is bombarded with X-rays to create a pattern that can be analyzed mathematically to determine the three-dimensional structure of the protein.This analysis has been performed by Krzysztof Palczewski on the protein rhodopsin,which is a light-sensitive protein found in species ranging from ancient bacteria (archaea)to humans.The structure (schematically shown above,where each letter represents an amino acid)is characterized by a single polypeptide chain with several α-helical segments that loop back and forth across the cell membrane.Another notable feature is the disulfide bond (-S-S-)that can be seen at the bottom of the third transmembrane segment.[Figure adapted from K.Palczewski et al. ,Science 289 (2000): 739.] -If you were reading off the sequence of amino acids in Figure 3.1 to a biologist friend,what should the first three letters be?](https://storage.examlex.com/TB3734/11ea48b8_22eb_9c66_b057_b92d39768e23_TB3734_00_TB3734_00_TB3734_00_TB3734_00_TB3734_00_TB3734_00.jpg)
(Multiple Choice)
4.8/5
(38)
How does the structure of an amino acid enable it to play its most important roles in cells?
(Multiple Choice)
4.9/5
(35)
Consider the experiment that Stanley Miller did to simulate chemical evolution.Recall that a glass flask held the reduced gases NH₃,CH₄,and H₂ and that the gases were exposed to electrical sparks.What is the null hypothesis in the experiment?
(Multiple Choice)
4.9/5
(43)
Refer to the following paragraph and Figure 3.1 to answer the following questions.
Figure 3.1
Since structure correlates so well with function,biochemists are constantly looking for new ways to probe the complex structure of proteins in order to understand what they do and how they do it.One of the most powerful techniques in existence today is X-ray crystallography.The main difficulty with this technique is getting the protein to crystallize.Once crystallized,the protein is bombarded with X-rays to create a pattern that can be analyzed mathematically to determine the three-dimensional structure of the protein.This analysis has been performed by Krzysztof Palczewski on the protein rhodopsin,which is a light-sensitive protein found in species ranging from ancient bacteria (archaea)to humans.The structure (schematically shown above,where each letter represents an amino acid)is characterized by a single polypeptide chain with several α-helical segments that loop back and forth across the cell membrane.Another notable feature is the disulfide bond (-S-S-)that can be seen at the bottom of the third transmembrane segment.[Figure adapted from K.Palczewski et al. ,Science 289 (2000): 739.]
-Identify the location of the disulfide bond in Figure 3.1.What is the name of the amino acids that are forming this bond?
![Refer to the following paragraph and Figure 3.1 to answer the following questions. Figure 3.1 Since structure correlates so well with function,biochemists are constantly looking for new ways to probe the complex structure of proteins in order to understand what they do and how they do it.One of the most powerful techniques in existence today is X-ray crystallography.The main difficulty with this technique is getting the protein to crystallize.Once crystallized,the protein is bombarded with X-rays to create a pattern that can be analyzed mathematically to determine the three-dimensional structure of the protein.This analysis has been performed by Krzysztof Palczewski on the protein rhodopsin,which is a light-sensitive protein found in species ranging from ancient bacteria (archaea)to humans.The structure (schematically shown above,where each letter represents an amino acid)is characterized by a single polypeptide chain with several α-helical segments that loop back and forth across the cell membrane.Another notable feature is the disulfide bond (-S-S-)that can be seen at the bottom of the third transmembrane segment.[Figure adapted from K.Palczewski et al. ,Science 289 (2000): 739.] -Identify the location of the disulfide bond in Figure 3.1.What is the name of the amino acids that are forming this bond?](https://storage.examlex.com/TB3734/11ea48b8_22eb_9c66_b057_b92d39768e23_TB3734_00_TB3734_00_TB3734_00_TB3734_00_TB3734_00_TB3734_00.jpg)
(Multiple Choice)
4.8/5
(30)
What aspects of amino acid structure vary among different amino acids?
(Multiple Choice)
4.9/5
(40)
What prediction does the chemical evolution hypothesis make?
(Multiple Choice)
4.9/5
(40)
Showing 21 - 40 of 47
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)