Exam 8: Graphs of the Trigonometric Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Consider the function y=cos(6xπ)y = \cos ( 6 x - \pi ) . Specify the period.

Free
(Multiple Choice)
4.9/5
(38)
Correct Answer:
Verified

D

Graph the function for one period, and show (or specify) intercepts and asymptotes. y=cot(x+π3)y = \cot \left( x + \frac { \pi } { 3 } \right)

Free
(Multiple Choice)
4.9/5
(30)
Correct Answer:
Verified

C

Consider the function y=8sinπx8y = 8 \sin \frac { \pi x } { 8 } on the interval [0,16][ 0,16 ] . Determine the χ\chi -intercepts by giving the χ\chi -coordinate(s).

Free
(Multiple Choice)
4.8/5
(35)
Correct Answer:
Verified

B

State whether the function y=sinxy = - \sin x is increasing or decreasing on the interval. 3π2<x<π- \frac { 3 \pi } { 2 } < x < - \pi

(Multiple Choice)
4.8/5
(35)

Given: cotθ+tanθ+1\cot \theta + \tan \theta + 1 . Determine the right side of the identity equation.

(Multiple Choice)
5.0/5
(32)

Graph the function for one period, and show (or specify) the intercepts and the asymptotes. y=tan(xπ6)y = - \tan \left( x - \frac { \pi } { 6 } \right)

(Multiple Choice)
4.9/5
(30)

Graph the function for one period, and show (or specify) intercepts and asymptotes. y=14csc(4πx)y = - \frac { 1 } { 4 } \csc ( 4 \pi x )

(Multiple Choice)
4.8/5
(37)

Use the Pythagorean identities to simplify the expression. cos2t+sin2tcot2t+1\frac { \cos ^ { 2 } t + \sin ^ { 2 } t } { \cot ^ { 2 } t + 1 }

(Multiple Choice)
4.8/5
(36)

Consider the function f(x)=sin(xπ4)f ( x ) = \sin \left( x - \frac { \pi } { 4 } \right) . Specify the phase shift.

(Multiple Choice)
4.8/5
(28)

Consider the function y=4sinxy = 4 \sin x . Specify the amplitude.

(Multiple Choice)
4.9/5
(37)

Consider the function y=cos3xy = \cos 3 x . Specify the period.

(Multiple Choice)
4.8/5
(24)

Graph the function for one period, and show (or specify) the intercepts and the asymptotes. y=tan(x+π2)y = \tan \left( x + \frac { \pi } { 2 } \right)

(Multiple Choice)
4.9/5
(29)

Consider the function y=sinx45y = \sin \frac { x } { 4 } - 5 on the interval [0,8π][ 0,8 \pi ] . Specify the intervals in which the function is increasing.

(Multiple Choice)
4.8/5
(37)

State whether the function y=sinxy = \sin x is increasing or decreasing on the interval. π2<x<π2- \frac { \pi } { 2 } < x < \frac { \pi } { 2 }

(Multiple Choice)
4.7/5
(38)

Refer to the graph of y=cosxy = \cos x in the figure. Specify the coordinates of the point I.  Refer to the graph of  y = \cos x  in the figure. Specify the coordinates of the point I.

(Multiple Choice)
4.9/5
(34)

Refer to the graph of y=sinxy = - \sin x in the figure. Specify the coordinates of the point I.  Refer to the graph of  y = - \sin x  in the figure. Specify the coordinates of the point I.

(Multiple Choice)
4.8/5
(40)

Graph the function for one period, and show (or specify) intercepts and asymptotes. y=csc(x4)y = - \csc \left( \frac { x } { 4 } \right)

(Multiple Choice)
4.9/5
(32)

Specify the period and amplitude for the function. Specify the period and amplitude for the function.

(Multiple Choice)
5.0/5
(35)

Determine whether the equation for the graph has the form y=AsinBxy = A \sin B x or y=AcosBxy = A \cos B x ( with B>0B > 0 ) and then find the values of AA and B { B } .  Determine whether the equation for the graph has the form  y = A \sin B x  or  y = A \cos B x  ( with  B > 0  ) and then find the values of  A  and   { B }  .

(Multiple Choice)
4.7/5
(33)

Consider the function y=1cosπx4y = 1 - \cos \frac { \pi x } { 4 } on the interval [0,8][ 0,8 ] . Determine the χ\chi -intercepts by giving the χ\chi -coordinate(s).

(Multiple Choice)
4.8/5
(35)
Showing 1 - 20 of 25
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)