Exam 9: Analytical Trigonometry

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use the given information to compute tan(s+t)\tan ( s + t ) and tan(st)\tan ( s - t ) . tans=5\tan s = 5 and tant=4\tan t = 4

Free
(Multiple Choice)
4.8/5
(32)
Correct Answer:
Verified

A

Evaluate the quantity without using a calculator or tables. sin(tan1(1))\sin \left( \tan ^ { - 1 } ( - 1 ) \right)

Free
(Multiple Choice)
4.8/5
(35)
Correct Answer:
Verified

B

Use the addition formulas for sine and cosine to simplify the expression. cos(θπ3)+cos(θ+π3)\cos \left( \theta - \frac { \pi } { 3 } \right) + \cos \left( \theta + \frac { \pi } { 3 } \right)

Free
(Multiple Choice)
4.8/5
(34)
Correct Answer:
Verified

B

Use the addition formulas for tangent to simplify the expression. tan2π7tan5π421+tan2π7tan5π42\frac { \tan \frac { 2 \pi } { 7 } - \tan \frac { 5 \pi } { 42 } } { 1 + \tan \frac { 2 \pi } { 7 } \tan \frac { 5 \pi } { 42 } }

(Multiple Choice)
4.8/5
(34)

Evaluate the quantity without using a calculator or tables. tan(arccos1213)\tan \left( \arccos \frac { 12 } { 13 } \right)

(Multiple Choice)
4.8/5
(38)

Use a product-to-sum formula to convert the expression to a sum or difference. Simplify where possible. cos47cos43\cos 47 ^ { \circ } \cos 43 ^ { \circ }

(Multiple Choice)
4.8/5
(32)

Convert the expression into a product. Simplify where possible. cos3π8sinπ8\cos \frac { 3 \pi } { 8 } - \sin \frac { \pi } { 8 } (Hint: Use the identity cosθ=sin(π2θ)\cos \theta = \sin \left( \frac { \pi } { 2 } - \theta \right) .)

(Multiple Choice)
4.9/5
(43)

Compute cos(α+θ)\cos ( \alpha + \theta ) and cos(αθ)\cos ( \alpha - \theta ) using the data below. sinα=35 where π2<α<π\sin \alpha = \frac { 3 } { 5 } \quad \text { where } \frac { \pi } { 2 } < \alpha < \pi cosθ=513 where 2π<θ<3π2\cos \theta = \frac { 5 } { 13 } \quad \text { where } - 2 \pi < \theta < - \frac { 3 \pi } { 2 }

(Multiple Choice)
4.8/5
(41)

Refer to the triangle and compute sin2s\sin 2 s .  Refer to the triangle and compute  \sin 2 s  .

(Multiple Choice)
4.9/5
(36)

Evaluate the given quantity, but do not use a calculator or table. cos1(12)\cos ^ { - 1 } \left( - \frac { 1 } { 2 } \right)

(Multiple Choice)
4.8/5
(31)

Evaluate the quantity without using a calculator or tables. cos(arctan13)\cos \left( \arctan \frac { 1 } { \sqrt { 3 } } \right)

(Multiple Choice)
4.8/5
(37)

Use the given information to compute cos(θ2)\cos \left( \frac { \theta } { 2 } \right) . sinθ=18\sin \theta = - \frac { 1 } { 8 } and 180<θ<270180 ^ { \circ } < \theta < 270 ^ { \circ }

(Multiple Choice)
4.9/5
(28)

Compute sin(αβ)\sin ( \alpha - \beta ) and cos(αβ)\cos ( \alpha - \beta ) using the data below. sinα=1213 where π2<α<π\sin \alpha = \frac { 12 } { 13 } \quad \text { where } \frac { \pi } { 2 } < \alpha < \pi cosβ=1517 where π<β<3π2\cos \beta = - \frac { 15 } { 17 } \quad \text { where } \pi < \beta < \frac { 3 \pi } { 2 }

(Multiple Choice)
4.9/5
(28)

Use the following information to evaluate the expression. cosθ=1213(3π2<θ<2π)\cos \theta = \frac { 12 } { 13 } \quad \left( \frac { 3 \pi } { 2 } < \theta < 2 \pi \right) tan(θ2)=?\tan \left( \frac { \theta } { 2 } \right) = ?

(Multiple Choice)
4.7/5
(33)

Determine all of the solutions in the interval 0θ1800 ^ { \circ } \leq \theta \leq 180 ^ { \circ } . tan2θ=33\tan 2 \theta = - \frac { \sqrt { 3 } } { 3 }

(Multiple Choice)
4.8/5
(35)

Find the right side of the identity. sins+sintsins+sint=?\frac { \sin s + \sin t } { \sin s + \sin t } = ?

(Multiple Choice)
4.8/5
(34)

Use a product-to-sum formula to convert the expression to a sum or difference. Simplify where possible. cosπ5cos4π5\cos \frac { \pi } { 5 } \cos \frac { 4 \pi } { 5 }

(Multiple Choice)
4.9/5
(28)

Refer to the triangle and compute tan(t2)\tan \left( \frac { t } { 2 } \right) .  Refer to the triangle and compute  \tan \left( \frac { t } { 2 } \right)  .

(Multiple Choice)
4.8/5
(44)

Is t=π3t = \frac { \pi } { 3 } a solution of 2sint+2cost=312 \sin t + 2 \cos t = \sqrt { 3 } - 1 ?

(True/False)
4.9/5
(27)

Use the given information to compute cos(θ2)\cos \left( \frac { \theta } { 2 } \right) . cosθ=47\cos \theta = \frac { 4 } { 7 } and 3π2<θ<2π\frac { 3 \pi } { 2 } < \theta < 2 \pi

(Multiple Choice)
4.9/5
(29)
Showing 1 - 20 of 25
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)