Exam 5: Trigonometric Functions: Unit Circle Approach

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Suppose that the terminal point determined by  t \text { t } is the point (215,25)\left( \frac { \sqrt { 21 } } { 5 } , - \frac { 2 } { 5 } \right) . Find the terminal point determined by each of the following: (a) 2πt2 \pi - t , (b) t- t , (c) tπt - \pi , (d) 4π+t4 \pi + t .

(Essay)
4.8/5
(37)

Find the exact value of tan(7π2)\tan \left( \frac { 7 \pi } { 2 } \right) and  Find the exact value of  \tan \left( \frac { 7 \pi } { 2 } \right)  and   . .

(Essay)
4.9/5
(40)

Find the value of tan113\tan ^ { - 1 } \frac { 1 } { \sqrt { 3 } } if it is defined.

(Essay)
4.8/5
(43)

Find the exact value of the expression, if it is defined. cos(tan1(3))\cos \left( \tan ^ { - 1 } ( - \sqrt { 3 } ) \right)

(Essay)
4.8/5
(35)

Find the exact value of the expression, if it is defined. sin(sin1(2/3))\sin \left( \sin ^ { - 1 } ( 2 / 3 ) \right)

(Short Answer)
4.8/5
(25)

Find the exact value of the expression, if it is defined. sin1(sin(π/3))\sin ^ { - 1 } ( \sin ( - \pi / 3 ) )

(Essay)
4.8/5
(37)

Find the terminal point P(x,y)P ( x , y ) on the unit circle determined by the value t=3π2t = - \frac {3 \pi } { 2 } .

(Essay)
4.8/5
(37)

If the terminal point determined by  t \text { t } is (12,32)\left( \frac { 1 } { 2 } , - \frac { \sqrt{3} } { 2 } \right) , find sin\sin  t \text { t } , cos\cos  t \text { t } and tan\tan  t \text { t } .

(Essay)
4.8/5
(35)

Find the reference number for t=26π5t = - \frac { 26 \pi } { 5 } .

(Essay)
4.9/5
(35)

Graph the three functions y=11+x2y = \frac { - 1 } { \sqrt { 1 + x ^ { 2 } } } , y=11+x2y = \frac { 1 } { \sqrt { 1 + x ^ { 2 } } } , and y=sin2πx1+x2y = \frac { \sin 2 \pi x } { \sqrt { 1 + x ^ { 2 } } } on a common screen. Explain how the graphs are related.

(Essay)
4.8/5
(31)

Find the exact value of each expression, if it is defined. sin1(1)\sin ^ { - 1 } ( - 1 ) cos1(3/2)\cos ^ { - 1 } ( - \sqrt { 3 } / 2 ) tan1(3/3)\tan ^ { - 1 } ( \sqrt { 3 } / 3 )

(Essay)
4.9/5
(29)

Sketch the graph of y=3+cosxy = 3 + \cos x .

(Essay)
4.8/5
(38)

Find P(x,y)P ( x , y ) on the unit circle, given that the xx - coordinate of PP is 13\frac { 1 } { 3 } and PP is in quadrant IV.

(Essay)
4.8/5
(30)

Find the exact value of sin(11π6)\sin \left( \frac { 11 \pi } { 6 } \right) and cos(11π6)\cos \left( - \frac { 11 \pi } { 6 } \right) .

(Essay)
4.9/5
(37)

If the terminal point determined by  t \text { t } is (1213,513)\left( \frac { 12 } { 13 } , - \frac { 5 } { 13 } \right) , find sint\sin t , cost\operatorname { cost } and tant\tan t .

(Essay)
4.9/5
(31)

Find the maximum and minimum values of the function y=cosx12cos2xy = \cos x - \frac { 1 } { 2 } \cos 2 x .

(Essay)
4.9/5
(40)

If the terminal point determined by  t \text { t } is (15,25)\left( \frac { 1 } { \sqrt { 5 } } , - \frac { 2 } { \sqrt { 5 } } \right) , find sin\sin  t \text { t } , cos\cos  t \text { t } and tan\tan  t \text { t } .

(Essay)
4.8/5
(43)

Find the value of cos(cos1(34))\cos \left( \cos ^ { - 1 } \left( - \frac { 3 } { 4 } \right) \right) if it is defined.

(Essay)
4.9/5
(26)

The function y=2cos(t3)y = - 2 \cos \left( \frac { t } { 3 } \right) models the displacement of an object moving in simple harmonic motion, where y is measured in inches and t in seconds. Find the amplitude, period, and frequency of motion and sketch a graph of the function over one complete period.

(Essay)
4.8/5
(33)

Find the amplitude, period and phase shift of y=2cos(4xπ2)y = 2 \cos \left( 4 x - \frac { \pi } { 2 } \right) and sketch its graph.

(Essay)
4.8/5
(34)
Showing 21 - 40 of 100
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)