Exam 5: Trigonometric Functions: Unit Circle Approach

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Indicate if the function f(x)=x3+xsin2xf ( x ) = x ^ { 3 } + x \sin ^ { 2 } x is even, odd or neither.

(Essay)
4.9/5
(38)

Find the exact value of Sec(3π4)\operatorname { Sec } \left( \frac { 3 \pi } { 4 } \right) and csc(11π4)\csc \left( - \frac { 11 \pi } { 4 } \right) .

(Essay)
4.8/5
(32)

Find the values of the trigonometric functions of  t \text { t } given that sint=35\sin t = - \frac { 3 } { 5 } and cott<0\cot t < 0 .

(Essay)
4.8/5
(33)

Find the exact value of the expression, if it is defined. tan(cos1(2/2))\tan \left( \cos ^ { - 1 } ( \sqrt { 2 } / 2 ) \right)

(Essay)
4.7/5
(23)

Find the period of the function y=sec(12xπ4)y = \sec \left( \frac { 1 } { 2 } x - \frac { \pi } { 4 } \right) and sketch its graph.

(Essay)
4.9/5
(36)

Find a function that models the simple harmonic motion having the given properties. Assume that the displacement is at its maximum at time t=0t = 0 . amplitude 6.25 m, frequency 60 Hz

(Essay)
4.9/5
(35)

Find the reference number and the terminal point P(x,y)P ( x , y ) determined by t=7π4t = - \frac { 7 \pi } { 4 } .

(Essay)
4.7/5
(36)

Find the reference number and the terminal point P(x,y)P ( x , y ) determined by  Find the reference number and the terminal point  P ( x , y )  determined by   . .

(Essay)
4.9/5
(43)

Graph the three functions y=2xy = - 2 ^ { - x } , y=2xy = 2 ^ { - x } , and y=2xsin4πxy = 2 ^ { - x } \sin 4 \pi x on a common screen. Explain how the graphs are related.

(Essay)
4.8/5
(25)

Find the approximate value of sin2.5\sin 2.5 using a calculator.

(Essay)
4.7/5
(26)

Find the period of the function y=12csc(2(x+π3))y = \frac { 1 } { 2 } \csc \left( 2 \left( x + \frac { \pi } { 3 } \right) \right) and sketch its graph.

(Essay)
4.8/5
(31)

Find P(x,y)P ( x , y ) on the unit circle, given that the xx - coordinate of PP is 16\frac { 1 } { 6 } and PP is in quadrant I.

(Essay)
4.8/5
(30)

Each time your heart beats, your blood pressure increases, then decreases as the heart rests between beats. A certain person's blood pressure is modeled by the function p(t)=120+25sin(150πt)p ( t ) = 120 + 25 \sin ( 150 \pi t ) , where p(t)p ( t ) is the pressure in mmHg, at time t measured in minutes. (a) Find the amplitude, average pressure between beats, the maximum and minimum blood pressure, period, and frequency of p. (b) Sketch the graph of p.

(Essay)
4.8/5
(35)

An initial amplitude k, damping constant c, and period p are given. a.) Find a function of the form y=kectsinωty = k e ^ { - c t } \sin \omega t that models damped harmonic motion. b.) Graph the function. k=100,c=0.5,p=π12k = 100 , c = 0.5 , p = \frac { \pi } { 12 }

(Essay)
4.8/5
(29)

Find P(x,y)P ( x , y ) on the unit circle, given that the xx - coordinate of PP is 12- \frac { 1 } { 2 } and PP is in quadrant III.

(Essay)
4.9/5
(44)

Find the period of the function y=13cscxy = \frac { 1 } { 3 } \csc x and sketch its graph.

(Essay)
4.8/5
(31)

Find the approximate value of cos(0.9)\cos ( - 0.9 ) using a calculator.

(Essay)
4.8/5
(30)

Find the period of the function y=32cscx2y = \frac { 3 } { 2 } \csc \frac { x } { 2 } and sketch its graph.

(Essay)
4.8/5
(37)

Find the reference number and the terminal point P(x,y)P ( x , y ) determined by t=11π6t = \frac { 11 \pi } { 6 } .

(Essay)
4.7/5
(33)

Find the period of the function y=3secxy = 3 \sec x and sketch its graph.

(Essay)
4.9/5
(37)
Showing 81 - 100 of 100
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)