Exam 8: Polar Coordinates and Parametric Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r=5secθr = 5 \sec \theta

Free
(Short Answer)
4.8/5
(37)
Correct Answer:
Verified

symmetric about the polar axis

Find the rectangular coordinates for the point whose polar coordinates are given. (0,11π)( 0,11 \pi )

Free
(Essay)
4.7/5
(26)
Correct Answer:
Verified

(0,0)( 0,0 )

Sketch a graph of the polar equation. r=2sin3θr = - 2 \sin 3 \theta

Free
(Essay)
4.8/5
(32)
Correct Answer:
Verified

For the point with polar coordinates P(1,π/3)P ( 1 , \pi / 3 ) find two other polar coordinate representations of P with r>0r > 0

(Essay)
4.8/5
(38)

Convert the polar equation to rectangular coordinates. r+cosθ=3r + \cos \theta = 3

(Essay)
4.8/5
(39)

Write 2(1+i)- 2 ( 1 + i ) in polar form, with θ\theta between 00 and 2π2 \pi .

(Essay)
4.8/5
(31)

Sketch the curve represented by x=12tx = \frac { 1 } { 2 } t , y=t2+3y = t ^ { 2 } + 3 and find a rectangular-coordinate equation for the curve.

(Essay)
4.9/5
(22)

Sketch the graph of the polar equation. r=22sinθr = 2 - 2 \sin \theta

(Essay)
4.8/5
(36)

Convert the polar equation to rectangular coordinates. r=8sinθr = 8 \sin \theta

(Essay)
4.8/5
(31)

Write the product z1z2z _ { 1 } z _ { 2 } , and quotient z1/z2z _ { 1 } / z _ { 2 } , of z1=2(cos5π6+isin5π6)z _ { 1 } = 2 \left( \cos \frac { 5 \pi } { 6 } + i \sin \frac { 5 \pi } { 6 } \right) and z2=5(cosπ3+isinπ3)z _ { 2 } = 5 \left( \cos \frac { \pi } { 3 } + i \sin \frac { \pi } { 3 } \right) in polar form.

(Essay)
4.9/5
(36)

Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ=π/2\theta = \pi / 2 . r2=cos2θr ^ { 2 } = \cos 2 \theta

(Short Answer)
4.7/5
(33)

Find the polar coordinates of the point with rectangular coordinates (3,3)( \sqrt { 3 } , - 3 ) .

(Essay)
4.8/5
(35)

Find parametric equations for the line of slope 22 passing through the point (2,4)( - 2,4 ) .

(Essay)
4.8/5
(34)

Sketch the curve represented by x=9t2x = 9 t ^ { 2 } , y=64t3y = 64 t ^ { 3 } and find a rectangular-coordinate equation for the curve.

(Essay)
4.7/5
(35)

Find the rectangular coordinates of the point with polar coordinates (2,π/3)( 2 , \pi / 3 ) .

(Essay)
4.8/5
(36)

Sketch the curve represented by Sketch the curve represented by   ,   and find a rectangular-coordinate equation for the curve. , Sketch the curve represented by   ,   and find a rectangular-coordinate equation for the curve. and find a rectangular-coordinate equation for the curve.

(Essay)
4.8/5
(27)

Convert the equation to polar form. y=9/4y = 9 / 4

(Essay)
4.9/5
(33)

Write 2i\sqrt { 2 } i in polar form, with θ\theta between 00 and 2π2 \pi .

(Essay)
4.7/5
(37)

Convert the rectangular coordinates to polar coordinates with r>0 and 0θ<2πr > 0 \text { and } 0 \leq \theta < 2 \pi (0,2)( 0 , - \sqrt { 2 } )

(Essay)
4.8/5
(32)

Write z1=1iz _ { 1 } = 1 - i and z2=13iz _ { 2 } = 1 - \sqrt { 3 } i in polar form and then find z1z2z _ { 1 } z _ { 2 } , z1/z2z _ { 1 } / z _ { 2 } , and 1/z11 / z _ { 1 } .

(Essay)
4.7/5
(35)
Showing 1 - 20 of 109
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)