Exam 13: Limits: a Preview of Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use the definition of area as a limit to find the area of the region that lies under the graph of f(x)=x2f ( x ) = x ^ { 2 } over the interval 1x51 \leq x \leq 5 .

(Essay)
4.8/5
(27)

For the function g whose graph is given, state the value of the given quantity if it exists.  For the function g whose graph is given, state the value of the given quantity if it exists.    a)  \lim _ { x \rightarrow 0 ^ { - } } g ( t )   b)  \lim _ { x \rightarrow 0 ^ { + } } g ( t )   c)  \lim _ { x \rightarrow 0 } g ( t ) a) limx0g(t)\lim _ { x \rightarrow 0 ^ { - } } g ( t ) b) limx0+g(t)\lim _ { x \rightarrow 0 ^ { + } } g ( t ) c) limx0g(t)\lim _ { x \rightarrow 0 } g ( t )

(Essay)
4.9/5
(38)

Use the definition of area as a limit to find the area of the region that lies under the graph of f(x)=3x2+2xf ( x ) = 3 x ^ { 2 } + 2 x over the interval 0x10 \leq x \leq 1 .

(Essay)
5.0/5
(43)

Evaluate limx11x21x3\lim _ { x \rightarrow 1 } \frac { 1 - x ^ { 2 } } { 1 - x ^ { 3 } } .

(Essay)
4.8/5
(37)

Find the equation of the tangent line to the curve y=y = x\sqrt { x } at the point (4,2)( 4,2 ) .

(Essay)
4.8/5
(39)

Find limx3x2x31\lim _ { x \rightarrow \infty } \frac { 3 x } { 2 x ^ { 3 } - 1 } .

(Essay)
4.7/5
(27)
Showing 61 - 66 of 66
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)