Exam 13: Limits: a Preview of Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the derivative of the function at the given number. f(x)=2x2f ( x ) = 2 - x ^ { 2 } at 2

(Essay)
4.9/5
(23)

Use the definition of area as a limit to find the area of the region that lies under the graph of f(x)=9x2f ( x ) = 9 - x ^ { 2 } over the interval 3x3- 3 \leq x \leq 3 .

(Essay)
4.9/5
(31)

Find the slope of the tangent line of the graph of f(x)=x3x2f ( x ) = x - 3 x ^ { 2 } at the point (1,4)( - 1 , - 4 ) .

(Essay)
4.9/5
(33)

Estimate the area under the graph of f(x)=2x+1f ( x ) = 2 x + 1 from x=0x = 0 to x=4x = 4 using (a) four approximating rectangles and right endpoints. (b) four approximating rectangles and left endpoints. (c) eight approximating rectangles and right endpoints.

(Essay)
4.9/5
(36)

Use a table of values to estimate the value of limxx2x2+1\lim _ { x \rightarrow \infty } \frac { x } { \sqrt { 2 x ^ { 2 } + 1 } } . Then use a graphing device to confirm your result graphically.

(Essay)
4.8/5
(38)

Find the derivative of the function at the given number. f(x)=x2x3f ( x ) = x ^ { 2 } - x ^ { 3 } at 1

(Essay)
4.8/5
(42)

Find the derivative of the function at the given number. g(x)=1+xg ( x ) = 1 + \sqrt { x } at 4

(Essay)
4.8/5
(28)

Use a table of values to estimate the value of limx0634+xx\lim _ { x \rightarrow 0 } \frac { 6 - 3 \sqrt { 4 + x } } { x } . Use a graphing device to confirm your answer graphically.

(Essay)
4.9/5
(34)

Evaluate limx02x2+x9x2\lim _ { x \rightarrow 0 } \frac { 2 x ^ { 2 } + x - 9 } { x - 2 } , and justify each step by indicating the appropriate Limit Law(s).

(Essay)
4.8/5
(42)

Determine whether the sequence an=(1)n1n.1a _ { n } = \frac { ( - 1 ) ^ { n - 1 } } { n . 1 } converges or diverges. If it converges, find the limit.

(Essay)
5.0/5
(34)

Find the derivative of the function at the given number. g(x)=x2+x3g ( x ) = x ^ { 2 } + x ^ { 3 } at 1

(Essay)
4.8/5
(46)

Evaluate the limit if it exists. limh0(4+h)141h\lim _ { h \rightarrow 0 } \frac { ( 4 + h ) ^ { - 1 } - 4 ^ { - 1 } } { h }

(Essay)
4.8/5
(33)

Determine whether the sequence an=limn54n4[n2(n+1)24]a _ { n } = \lim _ { n \rightarrow \infty } \frac { 5 } { 4 n ^ { 4 } } \left[ \frac { n ^ { 2 } ( n + 1 ) ^ { 2 } } { 4 } \right] converges or diverges. If it converges, find the limit.

(Essay)
4.8/5
(30)

Find f(a)f ^ { \prime } ( a ) , where a is in the domain of f. f(x)=x4f ( x ) = \sqrt { x - 4 }

(Essay)
5.0/5
(36)

Evaluate limt84t+88t\lim _ { t \rightarrow 8 } \frac { 4 - \sqrt { t + 8 } } { 8 - t } .

(Essay)
4.9/5
(42)

Evaluate the limit if it exists. limt0(12t1t2+2t)\lim _ { t \rightarrow 0 } \left( \frac { 1 } { 2 t } - \frac { 1 } { t ^ { 2 } + 2 t } \right)

(Essay)
4.8/5
(26)

Estimate the area under the graph of f(x)=2xf ( x ) = 2 ^ { - x } from x=0x = 0 to x=4x = 4 using (a) four approximating rectangles and right endpoints. (b) four approximating rectangles and left endpoints. (c) eight approximating rectangles and right endpoints.

(Essay)
4.8/5
(31)

Find the value of limx12xx21x1\lim _ { x \rightarrow 1 } \frac { 2 x - x ^ { 2 } - 1 } { | x - 1 | } , if it exists. If the limit does not exist, explain why.

(Essay)
4.7/5
(33)

Use a table of values to estimate the value of limxx62x\lim _ { x \rightarrow \infty } \frac { x ^ { 6 } } { 2 ^ { x } } . Then use a graphing device to confirm your result graphically.

(Short Answer)
4.8/5
(27)

Find the value of limx11x1x\lim _ { x \rightarrow 1 } \frac { | 1 - x | } { 1 - x } , if it exists. If the limit does not exist, explain why.

(Essay)
4.7/5
(38)
Showing 21 - 40 of 66
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)