Exam 3: Modeling and Solving Lp Problems in a Spreadsheet

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Exhibit 3.3 The following questions are based on this problem and accompanying Excel windows. Jack's distillery blends scotches for local bars and saloons. One of his customers has requested a special blend of scotch targeted as a bar scotch. The customer wants the blend to involve two scotch products, call them A and B. Product A is a higher quality scotch while product B is a cheaper brand. The customer wants to make the claim the blend is closer to high quality than the alternative. The customer wants 50 1500 ml bottles of the blend. Each bottle must contain at least 48% of Product A and at least 500 ml of B. The customer also specified that the blend have an alcohol content of at least 85%. Product A contains 95% alcohol while product B contains 78%. The blend is sold for $12.50 per bottle. Product A costs $7 per liter and product B costs $3 per liter. The company wants to determine the blend that will meet the customer's requirements and maximize profit. Exhibit 3.3 The following questions are based on this problem and accompanying Excel windows. Jack's distillery blends scotches for local bars and saloons. One of his customers has requested a special blend of scotch targeted as a bar scotch. The customer wants the blend to involve two scotch products, call them A and B. Product A is a higher quality scotch while product B is a cheaper brand. The customer wants to make the claim the blend is closer to high quality than the alternative. The customer wants 50 1500 ml bottles of the blend. Each bottle must contain at least 48% of Product A and at least 500 ml of B. The customer also specified that the blend have an alcohol content of at least 85%. Product A contains 95% alcohol while product B contains 78%. The blend is sold for $12.50 per bottle. Product A costs $7 per liter and product B costs $3 per liter. The company wants to determine the blend that will meet the customer's requirements and maximize profit.     -Refer to Exhibit 3.3. Which cells should be the constraint cells in this problem? Exhibit 3.3 The following questions are based on this problem and accompanying Excel windows. Jack's distillery blends scotches for local bars and saloons. One of his customers has requested a special blend of scotch targeted as a bar scotch. The customer wants the blend to involve two scotch products, call them A and B. Product A is a higher quality scotch while product B is a cheaper brand. The customer wants to make the claim the blend is closer to high quality than the alternative. The customer wants 50 1500 ml bottles of the blend. Each bottle must contain at least 48% of Product A and at least 500 ml of B. The customer also specified that the blend have an alcohol content of at least 85%. Product A contains 95% alcohol while product B contains 78%. The blend is sold for $12.50 per bottle. Product A costs $7 per liter and product B costs $3 per liter. The company wants to determine the blend that will meet the customer's requirements and maximize profit.     -Refer to Exhibit 3.3. Which cells should be the constraint cells in this problem? -Refer to Exhibit 3.3. Which cells should be the constraint cells in this problem?

(Multiple Choice)
4.9/5
(35)

Numeric constants should be

(Multiple Choice)
4.9/5
(41)

A farmer is planning his spring planting. He has 20 acres on which he can plant a combination of Corn, Pumpkins and Beans. He wants to maximize his profit but there is a limited demand for each crop. Each crop also requires fertilizer and irrigation water which are in short supply. There are only 50 acre ft of irrigation available and only 8,000 pounds/acre of fertilizer available. The following table summarizes the data for the problem. A farmer is planning his spring planting. He has 20 acres on which he can plant a combination of Corn, Pumpkins and Beans. He wants to maximize his profit but there is a limited demand for each crop. Each crop also requires fertilizer and irrigation water which are in short supply. There are only 50 acre ft of irrigation available and only 8,000 pounds/acre of fertilizer available. The following table summarizes the data for the problem.   Enter the numbers in the appropriate cells of ranges B12:D12 and E8:F12 in the Excel spreadsheet to solve this problem based on the following formulation.   ​  Enter the numbers in the appropriate cells of ranges B12:D12 and E8:F12 in the Excel spreadsheet to solve this problem based on the following formulation. A farmer is planning his spring planting. He has 20 acres on which he can plant a combination of Corn, Pumpkins and Beans. He wants to maximize his profit but there is a limited demand for each crop. Each crop also requires fertilizer and irrigation water which are in short supply. There are only 50 acre ft of irrigation available and only 8,000 pounds/acre of fertilizer available. The following table summarizes the data for the problem.   Enter the numbers in the appropriate cells of ranges B12:D12 and E8:F12 in the Excel spreadsheet to solve this problem based on the following formulation.   ​  A farmer is planning his spring planting. He has 20 acres on which he can plant a combination of Corn, Pumpkins and Beans. He wants to maximize his profit but there is a limited demand for each crop. Each crop also requires fertilizer and irrigation water which are in short supply. There are only 50 acre ft of irrigation available and only 8,000 pounds/acre of fertilizer available. The following table summarizes the data for the problem.   Enter the numbers in the appropriate cells of ranges B12:D12 and E8:F12 in the Excel spreadsheet to solve this problem based on the following formulation.   ​

(Essay)
4.9/5
(31)

The built-in Solver in Excel is found under which tab on the ribbon?

(Multiple Choice)
4.9/5
(31)

Exhibit 3.1 The following questions are based on this problem and accompanying Excel windows. Jones Furniture Company produces beds and desks for college students. The production process requires carpentry and varnishing. Each bed requires 6 hours of carpentry and 4 hour of varnishing. Each desk requires 4 hours of carpentry and 8 hours of varnishing. There are 36 hours of carpentry time and 40 hours of varnishing time available. Beds generate $30 of profit and desks generate $40 of profit. Demand for desks is limited, so at most 8 will be produced. Exhibit 3.1 The following questions are based on this problem and accompanying Excel windows. Jones Furniture Company produces beds and desks for college students. The production process requires carpentry and varnishing. Each bed requires 6 hours of carpentry and 4 hour of varnishing. Each desk requires 4 hours of carpentry and 8 hours of varnishing. There are 36 hours of carpentry time and 40 hours of varnishing time available. Beds generate $30 of profit and desks generate $40 of profit. Demand for desks is limited, so at most 8 will be produced.   The LP model for the problem is     -Refer to Exhibit 3.1. Which of the following statements represent the carpentry, varnishing and limited demand for desks constraints? The LP model for the problem is Exhibit 3.1 The following questions are based on this problem and accompanying Excel windows. Jones Furniture Company produces beds and desks for college students. The production process requires carpentry and varnishing. Each bed requires 6 hours of carpentry and 4 hour of varnishing. Each desk requires 4 hours of carpentry and 8 hours of varnishing. There are 36 hours of carpentry time and 40 hours of varnishing time available. Beds generate $30 of profit and desks generate $40 of profit. Demand for desks is limited, so at most 8 will be produced.   The LP model for the problem is     -Refer to Exhibit 3.1. Which of the following statements represent the carpentry, varnishing and limited demand for desks constraints? Exhibit 3.1 The following questions are based on this problem and accompanying Excel windows. Jones Furniture Company produces beds and desks for college students. The production process requires carpentry and varnishing. Each bed requires 6 hours of carpentry and 4 hour of varnishing. Each desk requires 4 hours of carpentry and 8 hours of varnishing. There are 36 hours of carpentry time and 40 hours of varnishing time available. Beds generate $30 of profit and desks generate $40 of profit. Demand for desks is limited, so at most 8 will be produced.   The LP model for the problem is     -Refer to Exhibit 3.1. Which of the following statements represent the carpentry, varnishing and limited demand for desks constraints? -Refer to Exhibit 3.1. Which of the following statements represent the carpentry, varnishing and limited demand for desks constraints?

(Multiple Choice)
4.8/5
(37)

Exhibit 3.4 The following questions are based on this problem and accompanying Excel windows. A financial planner wants to design a portfolio of investments for a client. The client has $300,000 to invest and the planner has identified four investment options for the money. The following requirements have been placed on the planner. No more than 25% of the money in any one investment, at least one third should be invested in long-term bonds which mature in seven or more years, and no more than 25% of the total money should be invested in C or D since they are riskier investments. The planner has developed the following LP model based on the data in this table and the requirements of the client. The objective is to maximize the total return of the portfolio. Exhibit 3.4 The following questions are based on this problem and accompanying Excel windows. A financial planner wants to design a portfolio of investments for a client. The client has $300,000 to invest and the planner has identified four investment options for the money. The following requirements have been placed on the planner. No more than 25% of the money in any one investment, at least one third should be invested in long-term bonds which mature in seven or more years, and no more than 25% of the total money should be invested in C or D since they are riskier investments. The planner has developed the following LP model based on the data in this table and the requirements of the client. The objective is to maximize the total return of the portfolio.         -Refer to Exhibit 3.4. Which cells are changing cells in the accompanying Excel spreadsheet? Exhibit 3.4 The following questions are based on this problem and accompanying Excel windows. A financial planner wants to design a portfolio of investments for a client. The client has $300,000 to invest and the planner has identified four investment options for the money. The following requirements have been placed on the planner. No more than 25% of the money in any one investment, at least one third should be invested in long-term bonds which mature in seven or more years, and no more than 25% of the total money should be invested in C or D since they are riskier investments. The planner has developed the following LP model based on the data in this table and the requirements of the client. The objective is to maximize the total return of the portfolio.         -Refer to Exhibit 3.4. Which cells are changing cells in the accompanying Excel spreadsheet? Exhibit 3.4 The following questions are based on this problem and accompanying Excel windows. A financial planner wants to design a portfolio of investments for a client. The client has $300,000 to invest and the planner has identified four investment options for the money. The following requirements have been placed on the planner. No more than 25% of the money in any one investment, at least one third should be invested in long-term bonds which mature in seven or more years, and no more than 25% of the total money should be invested in C or D since they are riskier investments. The planner has developed the following LP model based on the data in this table and the requirements of the client. The objective is to maximize the total return of the portfolio.         -Refer to Exhibit 3.4. Which cells are changing cells in the accompanying Excel spreadsheet? Exhibit 3.4 The following questions are based on this problem and accompanying Excel windows. A financial planner wants to design a portfolio of investments for a client. The client has $300,000 to invest and the planner has identified four investment options for the money. The following requirements have been placed on the planner. No more than 25% of the money in any one investment, at least one third should be invested in long-term bonds which mature in seven or more years, and no more than 25% of the total money should be invested in C or D since they are riskier investments. The planner has developed the following LP model based on the data in this table and the requirements of the client. The objective is to maximize the total return of the portfolio.         -Refer to Exhibit 3.4. Which cells are changing cells in the accompanying Excel spreadsheet? -Refer to Exhibit 3.4. Which cells are changing cells in the accompanying Excel spreadsheet?

(Multiple Choice)
4.9/5
(39)

The constraints X1 ≥ 0 and X2 ≥ 0 are referred to as

(Multiple Choice)
4.9/5
(39)

Data Envelopment Analysis (DEA) is an LP-based methodology in which weighted sums of inputs and outputs are calculated and

(Multiple Choice)
4.7/5
(34)

Exhibit 3.1 The following questions are based on this problem and accompanying Excel windows. Jones Furniture Company produces beds and desks for college students. The production process requires carpentry and varnishing. Each bed requires 6 hours of carpentry and 4 hour of varnishing. Each desk requires 4 hours of carpentry and 8 hours of varnishing. There are 36 hours of carpentry time and 40 hours of varnishing time available. Beds generate $30 of profit and desks generate $40 of profit. Demand for desks is limited, so at most 8 will be produced. Exhibit 3.1 The following questions are based on this problem and accompanying Excel windows. Jones Furniture Company produces beds and desks for college students. The production process requires carpentry and varnishing. Each bed requires 6 hours of carpentry and 4 hour of varnishing. Each desk requires 4 hours of carpentry and 8 hours of varnishing. There are 36 hours of carpentry time and 40 hours of varnishing time available. Beds generate $30 of profit and desks generate $40 of profit. Demand for desks is limited, so at most 8 will be produced.   The LP model for the problem is     -Refer to Exhibit 3.1. What formula should be entered in cell D8 in the accompanying Excel spreadsheet to compute the amount of carpentry used? The LP model for the problem is Exhibit 3.1 The following questions are based on this problem and accompanying Excel windows. Jones Furniture Company produces beds and desks for college students. The production process requires carpentry and varnishing. Each bed requires 6 hours of carpentry and 4 hour of varnishing. Each desk requires 4 hours of carpentry and 8 hours of varnishing. There are 36 hours of carpentry time and 40 hours of varnishing time available. Beds generate $30 of profit and desks generate $40 of profit. Demand for desks is limited, so at most 8 will be produced.   The LP model for the problem is     -Refer to Exhibit 3.1. What formula should be entered in cell D8 in the accompanying Excel spreadsheet to compute the amount of carpentry used? Exhibit 3.1 The following questions are based on this problem and accompanying Excel windows. Jones Furniture Company produces beds and desks for college students. The production process requires carpentry and varnishing. Each bed requires 6 hours of carpentry and 4 hour of varnishing. Each desk requires 4 hours of carpentry and 8 hours of varnishing. There are 36 hours of carpentry time and 40 hours of varnishing time available. Beds generate $30 of profit and desks generate $40 of profit. Demand for desks is limited, so at most 8 will be produced.   The LP model for the problem is     -Refer to Exhibit 3.1. What formula should be entered in cell D8 in the accompanying Excel spreadsheet to compute the amount of carpentry used? -Refer to Exhibit 3.1. What formula should be entered in cell D8 in the accompanying Excel spreadsheet to compute the amount of carpentry used?

(Multiple Choice)
4.7/5
(33)

A company needs to purchase several new machines to meet its future production needs. It can purchase three different types of machines A, B, and C. Each machine A costs $80,000 and requires 2,000 square feet of floor space. Each machine B costs $50,000 and requires 3,000 square feet of floor space. Each machine C costs $40,000 and requires 5,000 square feet of floor space. The machines can produce 200, 250 and 350 units per day respectively. The plant can only afford $500,000 for all the machines and has at most 20,000 square feet of room for the machines. The company wants to buy as many machines as possible to maximize daily production. ​ Formulate the LP for this problem.

(Essay)
4.9/5
(39)

The hospital administrators at New Hope, County General, and City East recently received notice of an impending state inspection of their facilities. Under new guidelines established to improve the overall health care system, state inspectors will be assessing the efficiency of each hospital. The staff at New Hope has suggested a mutual assistance program in preparation for the inspections and have proposed using DEA as a means to assess the efficiency of each facility. The data collected thus far is summarized in the following table. All data reflects averages compiled over the past six months. The hospital administrators at New Hope, County General, and City East recently received notice of an impending state inspection of their facilities. Under new guidelines established to improve the overall health care system, state inspectors will be assessing the efficiency of each hospital. The staff at New Hope has suggested a mutual assistance program in preparation for the inspections and have proposed using DEA as a means to assess the efficiency of each facility. The data collected thus far is summarized in the following table. All data reflects averages compiled over the past six months.   Enter the numbers in the appropriate cells of ranges B4:H6 in the Excel spreadsheet to solve this problem based on the following formulation.   ​   ​   ​ Enter the numbers in the appropriate cells of ranges B4:H6 in the Excel spreadsheet to solve this problem based on the following formulation. The hospital administrators at New Hope, County General, and City East recently received notice of an impending state inspection of their facilities. Under new guidelines established to improve the overall health care system, state inspectors will be assessing the efficiency of each hospital. The staff at New Hope has suggested a mutual assistance program in preparation for the inspections and have proposed using DEA as a means to assess the efficiency of each facility. The data collected thus far is summarized in the following table. All data reflects averages compiled over the past six months.   Enter the numbers in the appropriate cells of ranges B4:H6 in the Excel spreadsheet to solve this problem based on the following formulation.   ​   ​   ​The hospital administrators at New Hope, County General, and City East recently received notice of an impending state inspection of their facilities. Under new guidelines established to improve the overall health care system, state inspectors will be assessing the efficiency of each hospital. The staff at New Hope has suggested a mutual assistance program in preparation for the inspections and have proposed using DEA as a means to assess the efficiency of each facility. The data collected thus far is summarized in the following table. All data reflects averages compiled over the past six months.   Enter the numbers in the appropriate cells of ranges B4:H6 in the Excel spreadsheet to solve this problem based on the following formulation.   ​   ​   ​The hospital administrators at New Hope, County General, and City East recently received notice of an impending state inspection of their facilities. Under new guidelines established to improve the overall health care system, state inspectors will be assessing the efficiency of each hospital. The staff at New Hope has suggested a mutual assistance program in preparation for the inspections and have proposed using DEA as a means to assess the efficiency of each facility. The data collected thus far is summarized in the following table. All data reflects averages compiled over the past six months.   Enter the numbers in the appropriate cells of ranges B4:H6 in the Excel spreadsheet to solve this problem based on the following formulation.   ​   ​   ​

(Essay)
4.9/5
(35)

A company needs to purchase several new machines to meet its future production needs. It can purchase three different types of machines A, B, and C. Each machine A costs $80,000 and requires 2,000 square feet of floor space. Each machine B costs $50,000 and requires 3,000 square feet of floor space. Each machine C costs $40,000 and requires 5,000 square feet of floor space. The machines can produce 200, 250 and 350 units per day respectively. The plant can only afford $500,000 for all the machines and has at most 20,000 square feet of room for the machines. The company wants to buy as many machines as possible to maximize daily production. Enter the numbers in the appropriate cells of range B5:F10 in the Excel spreadsheet to solve this problem based on the following formulation. A company needs to purchase several new machines to meet its future production needs. It can purchase three different types of machines A, B, and C. Each machine A costs $80,000 and requires 2,000 square feet of floor space. Each machine B costs $50,000 and requires 3,000 square feet of floor space. Each machine C costs $40,000 and requires 5,000 square feet of floor space. The machines can produce 200, 250 and 350 units per day respectively. The plant can only afford $500,000 for all the machines and has at most 20,000 square feet of room for the machines. The company wants to buy as many machines as possible to maximize daily production. Enter the numbers in the appropriate cells of range B5:F10 in the Excel spreadsheet to solve this problem based on the following formulation.   ​  A company needs to purchase several new machines to meet its future production needs. It can purchase three different types of machines A, B, and C. Each machine A costs $80,000 and requires 2,000 square feet of floor space. Each machine B costs $50,000 and requires 3,000 square feet of floor space. Each machine C costs $40,000 and requires 5,000 square feet of floor space. The machines can produce 200, 250 and 350 units per day respectively. The plant can only afford $500,000 for all the machines and has at most 20,000 square feet of room for the machines. The company wants to buy as many machines as possible to maximize daily production. Enter the numbers in the appropriate cells of range B5:F10 in the Excel spreadsheet to solve this problem based on the following formulation.   ​

(Essay)
4.8/5
(27)

Robert Hope received a welcome surprise in this management science class; the instructor has decided to let each person define the percentage contribution to their grade for each of the graded instruments used in the class. These instruments were: homework, an individual project, a mid-term exam, and a final exam. Robert's grades on these instruments were 75, 94, 85, and 92, respectively. However, the instructor complicated Robert's task somewhat by adding the following stipulations: Robert Hope received a welcome surprise in this management science class; the instructor has decided to let each person define the percentage contribution to their grade for each of the graded instruments used in the class. These instruments were: homework, an individual project, a mid-term exam, and a final exam. Robert's grades on these instruments were 75, 94, 85, and 92, respectively. However, the instructor complicated Robert's task somewhat by adding the following stipulations:   The following LP model allows Robert to maximize his numerical grade.   ​   What values would you enter in the Analytic Solver Platform (ASP) task pane for the cells in this Excel spreadsheet implementation of this problem? Objective Cell: Variables Cells: Constraints Cells: The following LP model allows Robert to maximize his numerical grade. Robert Hope received a welcome surprise in this management science class; the instructor has decided to let each person define the percentage contribution to their grade for each of the graded instruments used in the class. These instruments were: homework, an individual project, a mid-term exam, and a final exam. Robert's grades on these instruments were 75, 94, 85, and 92, respectively. However, the instructor complicated Robert's task somewhat by adding the following stipulations:   The following LP model allows Robert to maximize his numerical grade.   ​   What values would you enter in the Analytic Solver Platform (ASP) task pane for the cells in this Excel spreadsheet implementation of this problem? Objective Cell: Variables Cells: Constraints Cells:Robert Hope received a welcome surprise in this management science class; the instructor has decided to let each person define the percentage contribution to their grade for each of the graded instruments used in the class. These instruments were: homework, an individual project, a mid-term exam, and a final exam. Robert's grades on these instruments were 75, 94, 85, and 92, respectively. However, the instructor complicated Robert's task somewhat by adding the following stipulations:   The following LP model allows Robert to maximize his numerical grade.   ​   What values would you enter in the Analytic Solver Platform (ASP) task pane for the cells in this Excel spreadsheet implementation of this problem? Objective Cell: Variables Cells: Constraints Cells: What values would you enter in the Analytic Solver Platform (ASP) task pane for the cells in this Excel spreadsheet implementation of this problem? Objective Cell: Variables Cells: Constraints Cells:

(Essay)
4.9/5
(35)

Robert Hope received a welcome surprise in this management science class; the instructor has decided to let each person define the percentage contribution to their grade for each of the graded instruments used in the class. These instruments were: homework, an individual project, a mid-term exam, and a final exam. Robert's grades on these instruments were 75, 94, 85, and 92, respectively. However, the instructor complicated Robert's task somewhat by adding the following stipulations: Robert Hope received a welcome surprise in this management science class; the instructor has decided to let each person define the percentage contribution to their grade for each of the graded instruments used in the class. These instruments were: homework, an individual project, a mid-term exam, and a final exam. Robert's grades on these instruments were 75, 94, 85, and 92, respectively. However, the instructor complicated Robert's task somewhat by adding the following stipulations:   Formulate an LP model for Robert to maximize his numerical grade. Formulate an LP model for Robert to maximize his numerical grade.

(Essay)
4.8/5
(36)

​In modeling a problem it is usually best to start by entering all equations in a spreadsheet.

(True/False)
4.8/5
(23)

Pete's Plastics manufactures plastic at plants in Miami, St. Louis and Cleveland. Pete needs to ship plastic to customers in Pittsburgh, Atlanta and Chicago. He wants to minimize the cost of shipping the plastic from his plants to his customers. The data for the problem is summarized in the following table. Pete's Plastics manufactures plastic at plants in Miami, St. Louis and Cleveland. Pete needs to ship plastic to customers in Pittsburgh, Atlanta and Chicago. He wants to minimize the cost of shipping the plastic from his plants to his customers. The data for the problem is summarized in the following table.   ​ Formulate the LP for this problem. ​ Formulate the LP for this problem.

(Essay)
4.8/5
(38)

The LHS value of a constraint represents the usage of an associated resource by the decision variables.

(True/False)
4.8/5
(38)

Carlton construction is supplying building materials for a new mall construction project in Kansas. Their contract calls for a total of 250,000 tons of material to be delivered over a three-week period. Carlton's supply depot has access to three modes of transportation: a trucking fleet, railway delivery, and air cargo transport. Their contract calls for 120,000 tons delivered by the end of week one, 80% of the total delivered by the end of week two, and the entire amount delivered by the end of week three. Contracts in place with the transportation companies call for at least 45% of the total delivered be delivered by trucking, at least 40% of the total delivered be delivered by railway, and up to 15% of the total delivered be delivered by air cargo. Unfortunately, competing demands limit the availability of each mode of transportation each of the three weeks to the following levels (all in thousands of tons): Carlton construction is supplying building materials for a new mall construction project in Kansas. Their contract calls for a total of 250,000 tons of material to be delivered over a three-week period. Carlton's supply depot has access to three modes of transportation: a trucking fleet, railway delivery, and air cargo transport. Their contract calls for 120,000 tons delivered by the end of week one, 80% of the total delivered by the end of week two, and the entire amount delivered by the end of week three. Contracts in place with the transportation companies call for at least 45% of the total delivered be delivered by trucking, at least 40% of the total delivered be delivered by railway, and up to 15% of the total delivered be delivered by air cargo. Unfortunately, competing demands limit the availability of each mode of transportation each of the three weeks to the following levels (all in thousands of tons):   The following is the LP model for this logistics problem.   ​   What formula goes in cells F10, E3, E4, E5, and B6 of this Excel spreadsheet? The following is the LP model for this logistics problem. Carlton construction is supplying building materials for a new mall construction project in Kansas. Their contract calls for a total of 250,000 tons of material to be delivered over a three-week period. Carlton's supply depot has access to three modes of transportation: a trucking fleet, railway delivery, and air cargo transport. Their contract calls for 120,000 tons delivered by the end of week one, 80% of the total delivered by the end of week two, and the entire amount delivered by the end of week three. Contracts in place with the transportation companies call for at least 45% of the total delivered be delivered by trucking, at least 40% of the total delivered be delivered by railway, and up to 15% of the total delivered be delivered by air cargo. Unfortunately, competing demands limit the availability of each mode of transportation each of the three weeks to the following levels (all in thousands of tons):   The following is the LP model for this logistics problem.   ​   What formula goes in cells F10, E3, E4, E5, and B6 of this Excel spreadsheet?Carlton construction is supplying building materials for a new mall construction project in Kansas. Their contract calls for a total of 250,000 tons of material to be delivered over a three-week period. Carlton's supply depot has access to three modes of transportation: a trucking fleet, railway delivery, and air cargo transport. Their contract calls for 120,000 tons delivered by the end of week one, 80% of the total delivered by the end of week two, and the entire amount delivered by the end of week three. Contracts in place with the transportation companies call for at least 45% of the total delivered be delivered by trucking, at least 40% of the total delivered be delivered by railway, and up to 15% of the total delivered be delivered by air cargo. Unfortunately, competing demands limit the availability of each mode of transportation each of the three weeks to the following levels (all in thousands of tons):   The following is the LP model for this logistics problem.   ​   What formula goes in cells F10, E3, E4, E5, and B6 of this Excel spreadsheet? What formula goes in cells F10, E3, E4, E5, and B6 of this Excel spreadsheet?

(Essay)
4.8/5
(49)

Carlton construction is supplying building materials for a new mall construction project in Kansas. Their contract calls for a total of 250,000 tons of material to be delivered over a three-week period. Carlton's supply depot has access to three modes of transportation: a trucking fleet, railway delivery, and air cargo transport. Their contract calls for 120,000 tons delivered by the end of week one, 80% of the total delivered by the end of week two, and the entire amount delivered by the end of week three. Contracts in place with the transportation companies call for at least 45% of the total delivered be delivered by trucking, at least 40% of the total delivered be delivered by railway, and up to 15% of the total delivered be delivered by air cargo. Unfortunately, competing demands limit the availability of each mode of transportation each of the three weeks to the following levels (all in thousands of tons): Carlton construction is supplying building materials for a new mall construction project in Kansas. Their contract calls for a total of 250,000 tons of material to be delivered over a three-week period. Carlton's supply depot has access to three modes of transportation: a trucking fleet, railway delivery, and air cargo transport. Their contract calls for 120,000 tons delivered by the end of week one, 80% of the total delivered by the end of week two, and the entire amount delivered by the end of week three. Contracts in place with the transportation companies call for at least 45% of the total delivered be delivered by trucking, at least 40% of the total delivered be delivered by railway, and up to 15% of the total delivered be delivered by air cargo. Unfortunately, competing demands limit the availability of each mode of transportation each of the three weeks to the following levels (all in thousands of tons):   The following is the LP model for this logistics problem.   ​   What values would you enter in the Analytic Solver Platform (ASP) task pane for the cells in this Excel spreadsheet implementation of this problem? Objective Cell: Variables Cells: Constraints Cells: The following is the LP model for this logistics problem. Carlton construction is supplying building materials for a new mall construction project in Kansas. Their contract calls for a total of 250,000 tons of material to be delivered over a three-week period. Carlton's supply depot has access to three modes of transportation: a trucking fleet, railway delivery, and air cargo transport. Their contract calls for 120,000 tons delivered by the end of week one, 80% of the total delivered by the end of week two, and the entire amount delivered by the end of week three. Contracts in place with the transportation companies call for at least 45% of the total delivered be delivered by trucking, at least 40% of the total delivered be delivered by railway, and up to 15% of the total delivered be delivered by air cargo. Unfortunately, competing demands limit the availability of each mode of transportation each of the three weeks to the following levels (all in thousands of tons):   The following is the LP model for this logistics problem.   ​   What values would you enter in the Analytic Solver Platform (ASP) task pane for the cells in this Excel spreadsheet implementation of this problem? Objective Cell: Variables Cells: Constraints Cells:Carlton construction is supplying building materials for a new mall construction project in Kansas. Their contract calls for a total of 250,000 tons of material to be delivered over a three-week period. Carlton's supply depot has access to three modes of transportation: a trucking fleet, railway delivery, and air cargo transport. Their contract calls for 120,000 tons delivered by the end of week one, 80% of the total delivered by the end of week two, and the entire amount delivered by the end of week three. Contracts in place with the transportation companies call for at least 45% of the total delivered be delivered by trucking, at least 40% of the total delivered be delivered by railway, and up to 15% of the total delivered be delivered by air cargo. Unfortunately, competing demands limit the availability of each mode of transportation each of the three weeks to the following levels (all in thousands of tons):   The following is the LP model for this logistics problem.   ​   What values would you enter in the Analytic Solver Platform (ASP) task pane for the cells in this Excel spreadsheet implementation of this problem? Objective Cell: Variables Cells: Constraints Cells: What values would you enter in the Analytic Solver Platform (ASP) task pane for the cells in this Excel spreadsheet implementation of this problem? Objective Cell: Variables Cells: Constraints Cells:

(Essay)
4.9/5
(33)

A company is planning production for the next 4 quarters. They want to minimize the cost of production. The production cost, demand and production capacity vary from quarter to quarter. The maximum amount of inventory which can be held is 100 units and management wants to keep at least 50 units on hand. Quarterly inventory holding cost is 4% of the cost of production. There are currently 50 units in inventory. The company wants to produce at no less than one half of its maximum capacity in any quarter. A company is planning production for the next 4 quarters. They want to minimize the cost of production. The production cost, demand and production capacity vary from quarter to quarter. The maximum amount of inventory which can be held is 100 units and management wants to keep at least 50 units on hand. Quarterly inventory holding cost is 4% of the cost of production. There are currently 50 units in inventory. The company wants to produce at no less than one half of its maximum capacity in any quarter.   ​   ​   What formulas are required for cells D3, D6, D8, D15, D17 and D18 in the Excel spreadsheet implementation of the formulation?A company is planning production for the next 4 quarters. They want to minimize the cost of production. The production cost, demand and production capacity vary from quarter to quarter. The maximum amount of inventory which can be held is 100 units and management wants to keep at least 50 units on hand. Quarterly inventory holding cost is 4% of the cost of production. There are currently 50 units in inventory. The company wants to produce at no less than one half of its maximum capacity in any quarter.   ​   ​   What formulas are required for cells D3, D6, D8, D15, D17 and D18 in the Excel spreadsheet implementation of the formulation?A company is planning production for the next 4 quarters. They want to minimize the cost of production. The production cost, demand and production capacity vary from quarter to quarter. The maximum amount of inventory which can be held is 100 units and management wants to keep at least 50 units on hand. Quarterly inventory holding cost is 4% of the cost of production. There are currently 50 units in inventory. The company wants to produce at no less than one half of its maximum capacity in any quarter.   ​   ​   What formulas are required for cells D3, D6, D8, D15, D17 and D18 in the Excel spreadsheet implementation of the formulation? What formulas are required for cells D3, D6, D8, D15, D17 and D18 in the Excel spreadsheet implementation of the formulation?

(Essay)
4.8/5
(37)
Showing 61 - 80 of 93
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)