Exam 7: Goal Programming and Multiple Objective Optimization

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The primary benefit of a MINIMAX objective function is

Free
(Multiple Choice)
4.8/5
(40)
Correct Answer:
Verified

C

Exhibit 7.4 The following questions are based on the problem below. Robert Gardner runs a small, local-only delivery service. His fleet consists of three smaller panel trucks. He recently accepted a contract to deliver 12 shipping boxes of goods for delivery to 12 different customers. The box weights are: 210, 160, 320, 90, 110, 70, 410, 260, 170, 240, 80 and 180 for boxes 1 through 12, respectively. Since each truck differs each truck has different load capacities as given below: Exhibit 7.4 The following questions are based on the problem below. Robert Gardner runs a small, local-only delivery service. His fleet consists of three smaller panel trucks. He recently accepted a contract to deliver 12 shipping boxes of goods for delivery to 12 different customers. The box weights are: 210, 160, 320, 90, 110, 70, 410, 260, 170, 240, 80 and 180 for boxes 1 through 12, respectively. Since each truck differs each truck has different load capacities as given below:   Robert would like each truck equally loaded, both in terms of number of boxes and in terms of total weight, while minimizing his shipping costs. Assume a cost of $50 per item for trucks carrying extra boxes and $0.10 per pound cost for trucks carrying less weight. The following integer goal programming formulation applies to his problem. Y<sub>1</sub> = weight loaded in truck 1; Y<sub>2</sub> = weight loaded in truck 2; Y<sub>3</sub> = weight loaded in truck 3; X<sub>i,j</sub> = 0 if truck i not loaded with box j; 1 if truck i loaded with box j.   Given the following spreadsheet solution of this integer goal programming formulation, answer the following questions.   -Refer to Exhibit 7.4. What formulas should go in cell E26 of the spreadsheet? Robert would like each truck equally loaded, both in terms of number of boxes and in terms of total weight, while minimizing his shipping costs. Assume a cost of $50 per item for trucks carrying extra boxes and $0.10 per pound cost for trucks carrying less weight. The following integer goal programming formulation applies to his problem. Y1 = weight loaded in truck 1; Y2 = weight loaded in truck 2; Y3 = weight loaded in truck 3; Xi,j = 0 if truck i not loaded with box j; 1 if truck i loaded with box j. Exhibit 7.4 The following questions are based on the problem below. Robert Gardner runs a small, local-only delivery service. His fleet consists of three smaller panel trucks. He recently accepted a contract to deliver 12 shipping boxes of goods for delivery to 12 different customers. The box weights are: 210, 160, 320, 90, 110, 70, 410, 260, 170, 240, 80 and 180 for boxes 1 through 12, respectively. Since each truck differs each truck has different load capacities as given below:   Robert would like each truck equally loaded, both in terms of number of boxes and in terms of total weight, while minimizing his shipping costs. Assume a cost of $50 per item for trucks carrying extra boxes and $0.10 per pound cost for trucks carrying less weight. The following integer goal programming formulation applies to his problem. Y<sub>1</sub> = weight loaded in truck 1; Y<sub>2</sub> = weight loaded in truck 2; Y<sub>3</sub> = weight loaded in truck 3; X<sub>i,j</sub> = 0 if truck i not loaded with box j; 1 if truck i loaded with box j.   Given the following spreadsheet solution of this integer goal programming formulation, answer the following questions.   -Refer to Exhibit 7.4. What formulas should go in cell E26 of the spreadsheet? Given the following spreadsheet solution of this integer goal programming formulation, answer the following questions. Exhibit 7.4 The following questions are based on the problem below. Robert Gardner runs a small, local-only delivery service. His fleet consists of three smaller panel trucks. He recently accepted a contract to deliver 12 shipping boxes of goods for delivery to 12 different customers. The box weights are: 210, 160, 320, 90, 110, 70, 410, 260, 170, 240, 80 and 180 for boxes 1 through 12, respectively. Since each truck differs each truck has different load capacities as given below:   Robert would like each truck equally loaded, both in terms of number of boxes and in terms of total weight, while minimizing his shipping costs. Assume a cost of $50 per item for trucks carrying extra boxes and $0.10 per pound cost for trucks carrying less weight. The following integer goal programming formulation applies to his problem. Y<sub>1</sub> = weight loaded in truck 1; Y<sub>2</sub> = weight loaded in truck 2; Y<sub>3</sub> = weight loaded in truck 3; X<sub>i,j</sub> = 0 if truck i not loaded with box j; 1 if truck i loaded with box j.   Given the following spreadsheet solution of this integer goal programming formulation, answer the following questions.   -Refer to Exhibit 7.4. What formulas should go in cell E26 of the spreadsheet? -Refer to Exhibit 7.4. What formulas should go in cell E26 of the spreadsheet?

Free
(Essay)
4.9/5
(36)
Correct Answer:
Verified

=SUMPRODUCT(B21:D21, B1:D1) + F17*SUM(B18:D18) + F18*SUM(B22:D22)

Exhibit 7.1 The following questions are based on the problem below. A company wants to advertise on TV and radio. The company wants to produce about 6 TV ads and 12 radio ads. Each TV ad costs $20,000 and is viewed by 10 million people. Radio ads cost $10,000 and are heard by 7 million people. The company wants to reach about 140 million people, and spend about $200,000 for all the ads. The problem has been set up in the following Excel spreadsheet. Exhibit 7.1 The following questions are based on the problem below. A company wants to advertise on TV and radio. The company wants to produce about 6 TV ads and 12 radio ads. Each TV ad costs $20,000 and is viewed by 10 million people. Radio ads cost $10,000 and are heard by 7 million people. The company wants to reach about 140 million people, and spend about $200,000 for all the ads. The problem has been set up in the following Excel spreadsheet.   -Refer to Exhibit 7.1. If the company is very concerned about going over the $200,000 budget, which cell value should change and how should it change? -Refer to Exhibit 7.1. If the company is very concerned about going over the $200,000 budget, which cell value should change and how should it change?

Free
(Multiple Choice)
4.8/5
(31)
Correct Answer:
Verified

C

A dietitian wants to formulate a low cost, high calorie food product for a customer. The following information is available about the 2 ingredients which can be combined to make the food. The customer wants 1000 pounds of the food product and it must contain at least 250 pounds of Food 1 and 300 pounds of Food 2. A dietitian wants to formulate a low cost, high calorie food product for a customer. The following information is available about the 2 ingredients which can be combined to make the food. The customer wants 1000 pounds of the food product and it must contain at least 250 pounds of Food 1 and 300 pounds of Food 2.   Formulate the MOLP for this problem. Formulate the MOLP for this problem.

(Essay)
4.9/5
(34)

A company wants to purchase large and small delivery trucks. The company wants to purchase about 10 large and 15 small trucks. Each large truck costs $30,000 and has a 10 ton capacity. Each small truck costs $20,000 and has a 7 ton capacity. The company wants to have about 200 tons of capacity and spend about $600,000. Based on the following formulation and associated integer solution, what values should go in cells B2:E16 of the spreadsheet? A company wants to purchase large and small delivery trucks. The company wants to purchase about 10 large and 15 small trucks. Each large truck costs $30,000 and has a 10 ton capacity. Each small truck costs $20,000 and has a 7 ton capacity. The company wants to have about 200 tons of capacity and spend about $600,000. Based on the following formulation and associated integer solution, what values should go in cells B2:E16 of the spreadsheet?   ​  A company wants to purchase large and small delivery trucks. The company wants to purchase about 10 large and 15 small trucks. Each large truck costs $30,000 and has a 10 ton capacity. Each small truck costs $20,000 and has a 7 ton capacity. The company wants to have about 200 tons of capacity and spend about $600,000. Based on the following formulation and associated integer solution, what values should go in cells B2:E16 of the spreadsheet?   ​

(Essay)
4.7/5
(35)

An investor wants to invest $50,000 in two mutual funds, A and B. The rates of return, risks and minimum investment requirements for each fund are: An investor wants to invest $50,000 in two mutual funds, A and B. The rates of return, risks and minimum investment requirements for each fund are:   Note that a low Risk rating means a less risky investment. The investor wants to maximize the expected rate of return while minimizing his risk. Any money beyond the minimum investment requirements can be invested in either fund. The investor has found that the maximum possible expected rate of return is 11.4% and the minimum possible risk is 0.32. The following Excel spreadsheet has been created to solve a goal programming problem with a MINIMAX objective based on the following goal programming formulation with MINIMAX objective and corresponding solution.   with solution (X<sub>1</sub>, X<sub>2</sub>) = (15,370, 34,630). What values should go in cells B2:D14 of the spreadsheet?  Note that a low Risk rating means a less risky investment. The investor wants to maximize the expected rate of return while minimizing his risk. Any money beyond the minimum investment requirements can be invested in either fund. The investor has found that the maximum possible expected rate of return is 11.4% and the minimum possible risk is 0.32. The following Excel spreadsheet has been created to solve a goal programming problem with a MINIMAX objective based on the following goal programming formulation with MINIMAX objective and corresponding solution. An investor wants to invest $50,000 in two mutual funds, A and B. The rates of return, risks and minimum investment requirements for each fund are:   Note that a low Risk rating means a less risky investment. The investor wants to maximize the expected rate of return while minimizing his risk. Any money beyond the minimum investment requirements can be invested in either fund. The investor has found that the maximum possible expected rate of return is 11.4% and the minimum possible risk is 0.32. The following Excel spreadsheet has been created to solve a goal programming problem with a MINIMAX objective based on the following goal programming formulation with MINIMAX objective and corresponding solution.   with solution (X<sub>1</sub>, X<sub>2</sub>) = (15,370, 34,630). What values should go in cells B2:D14 of the spreadsheet?  with solution (X1, X2) = (15,370, 34,630). What values should go in cells B2:D14 of the spreadsheet? An investor wants to invest $50,000 in two mutual funds, A and B. The rates of return, risks and minimum investment requirements for each fund are:   Note that a low Risk rating means a less risky investment. The investor wants to maximize the expected rate of return while minimizing his risk. Any money beyond the minimum investment requirements can be invested in either fund. The investor has found that the maximum possible expected rate of return is 11.4% and the minimum possible risk is 0.32. The following Excel spreadsheet has been created to solve a goal programming problem with a MINIMAX objective based on the following goal programming formulation with MINIMAX objective and corresponding solution.   with solution (X<sub>1</sub>, X<sub>2</sub>) = (15,370, 34,630). What values should go in cells B2:D14 of the spreadsheet?

(Essay)
4.8/5
(35)

Exhibit 7.1 The following questions are based on the problem below. A company wants to advertise on TV and radio. The company wants to produce about 6 TV ads and 12 radio ads. Each TV ad costs $20,000 and is viewed by 10 million people. Radio ads cost $10,000 and are heard by 7 million people. The company wants to reach about 140 million people, and spend about $200,000 for all the ads. The problem has been set up in the following Excel spreadsheet. Exhibit 7.1 The following questions are based on the problem below. A company wants to advertise on TV and radio. The company wants to produce about 6 TV ads and 12 radio ads. Each TV ad costs $20,000 and is viewed by 10 million people. Radio ads cost $10,000 and are heard by 7 million people. The company wants to reach about 140 million people, and spend about $200,000 for all the ads. The problem has been set up in the following Excel spreadsheet.   -Refer to Exhibit 7.1. What formula goes in cell D6? -Refer to Exhibit 7.1. What formula goes in cell D6?

(Multiple Choice)
4.8/5
(39)

Exhibit 7.1 The following questions are based on the problem below. A company wants to advertise on TV and radio. The company wants to produce about 6 TV ads and 12 radio ads. Each TV ad costs $20,000 and is viewed by 10 million people. Radio ads cost $10,000 and are heard by 7 million people. The company wants to reach about 140 million people, and spend about $200,000 for all the ads. The problem has been set up in the following Excel spreadsheet. Exhibit 7.1 The following questions are based on the problem below. A company wants to advertise on TV and radio. The company wants to produce about 6 TV ads and 12 radio ads. Each TV ad costs $20,000 and is viewed by 10 million people. Radio ads cost $10,000 and are heard by 7 million people. The company wants to reach about 140 million people, and spend about $200,000 for all the ads. The problem has been set up in the following Excel spreadsheet.   -Refer to Exhibit 7.1. What formula goes in cell B9? -Refer to Exhibit 7.1. What formula goes in cell B9?

(Multiple Choice)
4.9/5
(35)

Exhibit 7.2 The following questions are based on the problem below. An investor has $150,000 to invest in investments A and B. Investment A requires a $10,000 minimum investment, pays a return of 12% and has a risk factor of .50. Investment B requires a $15,000 minimum investment, pays a return of 10% and has a risk factor of .20. The investor wants to maximize the return while minimizing the risk of the portfolio. The following multi-objective linear programming (MOLP) has been solved in Excel. Exhibit 7.2 The following questions are based on the problem below. An investor has $150,000 to invest in investments A and B. Investment A requires a $10,000 minimum investment, pays a return of 12% and has a risk factor of .50. Investment B requires a $15,000 minimum investment, pays a return of 10% and has a risk factor of .20. The investor wants to maximize the return while minimizing the risk of the portfolio. The following multi-objective linear programming (MOLP) has been solved in Excel.   -Refer to Exhibit 7.2. What formula goes in cell B11? -Refer to Exhibit 7.2. What formula goes in cell B11?

(Multiple Choice)
4.7/5
(27)

Deviational variables

(Multiple Choice)
4.9/5
(35)

Goal programming solution feedback indicates that the d4+ level of 50 should not be exceeded in future solution iterations. How should you modify your goal constraint ​ 40 X1 + 20 X2 + d4− + d4+ = 300 ​ To accommodate this requirement?

(Multiple Choice)
4.9/5
(27)

The "triple bottom line" incorporates multiple objective decision-making by:

(Multiple Choice)
4.9/5
(47)

What is the soft constraint form of the following hard constraint? ​ 3X1 + 2 X2 ≤ 10 ​

(Multiple Choice)
4.9/5
(33)

If no other feasible solution to a multi-objective linear programming (MOLP) problem allows an increase in any objective without decreasing at least one other objective, the solution is said to be

(Multiple Choice)
4.8/5
(31)

Robert Gardner runs a small, local-only delivery service. His fleet consists of three smaller panel trucks. He recently accepted a contract to deliver 12 shipping boxes of goods for delivery to 12 different customers. The box weights are: 210, 160, 320, 90, 110, 70, 410, 260, 170, 240, 80 and 180 for boxes 1 through 12, respectively. Since each truck differs each truck has different load capacities as given below: Robert Gardner runs a small, local-only delivery service. His fleet consists of three smaller panel trucks. He recently accepted a contract to deliver 12 shipping boxes of goods for delivery to 12 different customers. The box weights are: 210, 160, 320, 90, 110, 70, 410, 260, 170, 240, 80 and 180 for boxes 1 through 12, respectively. Since each truck differs each truck has different load capacities as given below:   Robert would like each truck equally loaded, both in terms of number of boxes and in terms of total weight, while minimizing his shipping costs. Assume a cost of $50 per item for trucks carrying extra boxes and $0.10 per pound cost for trucks carrying less weight. Formulate the integer goal programming problem for Robert. (Hint: objective function involves decision and deviation variables.) Robert would like each truck equally loaded, both in terms of number of boxes and in terms of total weight, while minimizing his shipping costs. Assume a cost of $50 per item for trucks carrying extra boxes and $0.10 per pound cost for trucks carrying less weight. Formulate the integer goal programming problem for Robert. (Hint: objective function involves decision and deviation variables.)

(Essay)
4.9/5
(37)

A constraint which cannot be violated is called a

(Multiple Choice)
4.8/5
(39)

Suppose that the first goal in a GP problem is to make 3 X1 + 4 X2 approximately equal to 36. Using the deviational variables d1− and d1+, the following constraint can be used to express this goal. ​ 3 X1 + 4 X2 + d1− − d1+ = 36 ​ If we obtain a solution where X1 = 6 and X2 = 2, what values do the deviational variables assume?

(Multiple Choice)
4.8/5
(39)

What weight would be assigned to a neutral deviational variable?

(Multiple Choice)
4.8/5
(40)

A constraint which represents a target value for a problem is called a

(Multiple Choice)
4.7/5
(28)

The RHS value of a goal constraint is referred to as the

(Multiple Choice)
4.9/5
(39)
Showing 1 - 20 of 81
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)