Solved

Use Logarithmic Differentiation to Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x }

Question 61

Multiple Choice

Use logarithmic differentiation to find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . y=(x3+x) x3+6y = \left( x ^ { 3 } + x \right) \sqrt { x ^ { 3 } + 6 } ?


A) (3x2+1x3+x+3x22x3+12) \left( \frac { 3 x ^ { 2 } + 1 } { x ^ { 3 } + x } + \frac { 3 x ^ { 2 } } { 2 x ^ { 3 } + 12 } \right)
B) (x3+x) x3+6(1x3+x+12(x3+6) ) \left( x ^ { 3 } + x \right) \sqrt { x ^ { 3 } + 6 } \left( \frac { 1 } { x ^ { 3 } + x } + \frac { 1 } { 2 \left( x ^ { 3 } + 6 \right) } \right)
C) (x3+x) x3+6(3x2+1x3+x+3x22(x3+6) ) \left( x ^ { 3 } + x \right) \sqrt { x ^ { 3 } + 6 } \left( \frac { 3 x ^ { 2 } + 1 } { x ^ { 3 } + x } + \frac { 3 x ^ { 2 } } { 2 \left( x ^ { 3 } + 6 \right) } \right)
D) (3x2+1) (3x2+1x+3x22x3+12) \left( 3 x ^ { 2 } + 1 \right) \left( \frac { 3 x ^ { 2 } + 1 } { x } + \frac { 3 x ^ { 2 } } { 2 x ^ { 3 } + 12 } \right)
E) 3x2x3+12(3x2+1x3+x+x22x3+6) 3 x ^ { 2 } \sqrt { x ^ { 3 } + 12 } \left( \frac { 3 x ^ { 2 } + 1 } { x ^ { 3 } + x } + \frac { x ^ { 2 } } { 2 x ^ { 3 } + 6 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions