Solved

Find the Equation of the Straight Line, Tangent To y=e7xlog5xy = e ^ { 7 x } \log _ { 5 } x

Question 62

Multiple Choice

Find the equation of the straight line, tangent to y=e7xlog5xy = e ^ { 7 x } \log _ { 5 } x at the point (1,0) ( 1,0 ) .


A) y(x) =e7ln5x+e7ln5y ( x ) = \frac { e ^ { 7 } } { \ln 5 } x + \frac { e ^ { 7 } } { \ln 5 }
B) y(x) =e5ln7xe5ln7y ( x ) = \frac { e ^ { 5 } } { \ln 7 } x - \frac { e ^ { 5 } } { \ln 7 }
C) y(x) =e5ln7x+e5ln7y ( x ) = \frac { e ^ { 5 } } { \ln 7 } x + \frac { e ^ { 5 } } { \ln 7 }
D) y(x) =e7ln5xe7ln5y ( x ) = \frac { e ^ { 7 } } { \ln 5 } x - \frac { e ^ { 7 } } { \ln 5 }
E) none of these

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions