Solved

Diagonalize the Matrix A, If Possible A=PDP1A = P D P^{ - 1}

Question 20

Multiple Choice

Diagonalize the matrix A, if possible. That is, find an invertible matrix P and a diagonal matrix D such that
A=PDP1A = P D P^{ - 1}
- A=[1139050634]A = \left[ \begin{array} { r r r } - 11 & 3 & - 9 \\0 & - 5 & 0 \\6 & - 3 & 4\end{array} \right]


A) P=[151530131],D=[510050002]P = \left[ \begin{array} { r r r } 1 & 5 & - 1 \\ 5 & 3 & 0 \\ 1 & 3 & 1 \end{array} \right] , D = \left[ \begin{array} { r r r } - 5 & 1 & 0 \\ 0 & - 5 & 0 \\ 0 & 0 & - 2 \end{array} \right]
B)
P=[101530111],D=[500050002]P = \left[ \begin{array} { r r r } 1 & 0 & - 1 \\5 & 3 & 0 \\1 & 1 & 1\end{array} \right] , D = \left[ \begin{array} { r r r } - 5 & 0 & 0 \\0 & - 5 & 0 \\0 & 0 & - 2\end{array} \right]
C)
P=[101030111],D=[500010002]\mathrm { P } = \left[ \begin{array} { r r r } 1 & 0 & - 1 \\0 & 3 & 0 \\1 & 1 & 1\end{array} \right] , \mathrm { D } = \left[ \begin{array} { r r r } - 5 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & - 2\end{array} \right]
D)
P=[101530111],D=[502050052]\mathrm { P } = \left[ \begin{array} { r r r } 1 & 0 & - 1 \\5 & 3 & 0 \\1 & 1 & 1\end{array} \right] , \mathrm { D } = \left[ \begin{array} { r r r } - 5 & 0 & - 2 \\0 & - 5 & 0 \\0 & - 5 & - 2\end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions