Solved

Evaluate the Integral by Making a Substitution and Then Using e2x2ex+3dx\int \frac { e ^ { 2 x } } { 2 e ^ { x } + 3 } d x

Question 371

Multiple Choice

Evaluate the integral by making a substitution and then using a table of integrals.
- e2x2ex+3dx\int \frac { e ^ { 2 x } } { 2 e ^ { x } + 3 } d x


A) ex2+34sin12ex+3+C\frac { e ^ { x } } { 2 } + \frac { 3 } { 4 } \sin ^ { - 1 } \left| 2 e ^ { x } + 3 \right| + C
B) 32ex+3+ln2ex+3+C\frac { 3 } { 2 e ^ { x } + 3 } + \ln \left| 2 e ^ { x } + 3 \right| + C
C) ex234ln2ex+3+C\frac { e ^ { x } } { 2 } - \frac { 3 } { 4 } \ln \left| 2 e ^ { x } + 3 \right| + C
D) x234ln2x+3+C\frac { x } { 2 } - \frac { 3 } { 4 } \ln | 2 x + 3 | + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions