Solved

Provide an Appropriate Response f(x)=12πex2/2\mathrm { f } ( \mathrm { x } ) = \frac { 1 } { \sqrt { 2 \pi } } \mathrm { e } ^ { - \mathrm { x } ^ { 2 } / 2 }

Question 373

Essay

Provide an appropriate response.
-The standard normal probability density function is defined by f(x)=12πex2/2\mathrm { f } ( \mathrm { x } ) = \frac { 1 } { \sqrt { 2 \pi } } \mathrm { e } ^ { - \mathrm { x } ^ { 2 } / 2 } .
(a) Show that 012πxex2/2dx=12π\int _ { 0 } ^ { \infty } \frac { 1 } { \sqrt { 2 \pi } } x \mathrm { e } ^ { - x ^ { 2 } / 2 } \mathrm { dx } = \frac { 1 } { \sqrt { 2 \pi } } .
(b) Use the result in part (a) to show that the standard normal probability density function has mean 0 .

Correct Answer:

verifed

Verified

(a) blured image.

(b) Since blured image is...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions