menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Thomas Calculus Early Transcendentals
  4. Exam
    Exam 9: Techniques of Integration
  5. Question
    Determine Whether the Improper Integral Converges or Diverges\[\int _ { 1 } ^ { \infty } \frac { 5 } { \sqrt { x ^ { 2 } + 3 } }\]
Solved

Determine Whether the Improper Integral Converges or Diverges ∫1∞5x2+3\int _ { 1 } ^ { \infty } \frac { 5 } { \sqrt { x ^ { 2 } + 3 } }∫1∞​x2+3​5​

Question 32

Question 32

Multiple Choice

Determine whether the improper integral converges or diverges.
- ∫1∞5x2+3\int _ { 1 } ^ { \infty } \frac { 5 } { \sqrt { x ^ { 2 } + 3 } }∫1∞​x2+3​5​


A) Converges
B) Diverges

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q27: Solve the problem.<br>-Find the length of

Q28: Evaluate the integral.<br>- <span class="ql-formula" data-value="\int

Q29: Evaluate the integral.<br>- <span class="ql-formula" data-value="\int

Q30: Solve the problem.<br>-Find an upper bound

Q31: Evaluate the integral.<br>- <span class="ql-formula" data-value="\int

Q33: Evaluate the integral.<br>- <span class="ql-formula" data-value="\int

Q34: Evaluate the integral.<br>- <span class="ql-formula" data-value="\int

Q35: Evaluate the integral.<br>- <span class="ql-formula" data-value="\int

Q36: Solve the problem.<br>-The length of the

Q37: Determine whether the improper integral converges

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines