Solved

Solve the Problem D\mathrm { D } Be the Region Bounded Below by the Cone

Question 106

Multiple Choice

Solve the problem.
-Let D\mathrm { D } be the region bounded below by the cone z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } } and above by the sphere z=4x2y2z = \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } . Set up the triple integral in cylindrical coordinates that gives the volume of DD using the order of integration drdzdθ\mathrm { dr } \mathrm { dz } \mathrm { d } \theta .


A) 02π02/20zrdrdzdθ+02π2/2208z2rdrdzdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 2 / \sqrt { 2 } } \int _ { 0 } ^ { z } r d r d z d \theta + \int _ { 0 } ^ { 2 \pi } \int _ { 2 / \sqrt { 2 } } ^ { 2 } \int _ { 0 } ^ { \sqrt { 8 - z ^ { 2 } } } r d r d z d \theta
B) 02π02/20zrdrdzdθ+02π2/2208z2rdrdzdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 2 / 2 } \int _ { 0 } ^ { z } r d r d z d \theta + \int _ { 0 } ^ { 2 \pi } \int _ { 2 / 2 } ^ { 2 } \int _ { 0 } ^ { \sqrt { 8 - z ^ { 2 } } } r d r d z d \theta
C) 02π02/20zrdrdzdθ+02π2/2204z2rdrdzdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 2 / 2 } \int _ { 0 } ^ { \mathrm { z } } \mathrm { rdrdz } \mathrm { d } \theta + \int _ { 0 } ^ { 2 \pi } \int _ { 2 / 2 } ^ { 2 } \int _ { 0 } ^ { \sqrt { 4 - \mathrm { z } ^ { 2 } } } \mathrm { rdr } \mathrm { dz } \mathrm { d } \theta
D) 02π02/20zrdrdzdθ+02π2/2204z2rdrdzdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 2 / \sqrt { 2 } } \int _ { 0 } ^ { z } r d r d z d \theta + \int _ { 0 } ^ { 2 \pi } \int _ { 2 / \sqrt { 2 } } ^ { 2 } \int _ { 0 } ^ { \sqrt { 4 - z ^ { 2 } } } r d r d z d \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions