Solved

Use the Given Transformation to Evaluate the Integral u=yx,v=y+x;cosh(yxy+x)dxdy\begin{array} { l } u = y - x , v = y + x ; \\\quad \iint \cosh \left( \frac { y - x } { y + x } \right) d x d y\end{array}

Question 110

Multiple Choice

Use the given transformation to evaluate the integral.
- u=yx,v=y+x;cosh(yxy+x) dxdy\begin{array} { l } u = y - x , v = y + x ; \\\quad \iint \cosh \left( \frac { y - x } { y + x } \right) d x d y\end{array}
where RR is the trapezoid with vertices at (6,0) ,(7,0) ,(0,6) ,(0,7) ( 6,0 ) , ( 7,0 ) , ( 0,6 ) , ( 0,7 )


A) 13(e21) 6e\frac { 13 \left( e ^ { 2 } - 1 \right) } { 6 e }
B) 13(e21) 3e\frac { 13 \left( \mathrm { e } ^ { 2 } - 1 \right) } { 3 \mathrm { e } }
C) 13(e21) 4e\frac { 13 \left( \mathrm { e } ^ { 2 } - 1 \right) } { 4 \mathrm { e } }
D) 13(e21) 2e\frac { 13 \left( \mathrm { e } ^ { 2 } - 1 \right) } { 2 \mathrm { e } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions