Solved

Solve the Problem x2+y2+z2=36x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 36

Question 116

Multiple Choice

Solve the problem.
-Find the center of mass of the region of constant density bounded from above by the sphere x2+y2+z2=36x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 36 and from below by the cone z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } } .


A) xˉ=0,yˉ=0,zˉ=94(2+2) \bar { x } = 0 , \bar { y } = 0 , \bar { z } = \frac { 9 } { 4 } ( 2 + \sqrt { 2 } )
B) xˉ=0,yˉ=0,zˉ=218(2+2) \bar { x } = 0 , \bar { y } = 0 , \bar { z } = \frac { 21 } { 8 } ( 2 + \sqrt { 2 } )
C) xˉ=0,yˉ=0,zˉ=158(2+2) \bar { x } = 0 , \bar { y } = 0 , \bar { z } = \frac { 15 } { 8 } ( 2 + \sqrt { 2 } )
D) xˉ=0,yˉ=0,zˉ=98(2+2) \bar { x } = 0 , \bar { y } = 0 , \bar { z } = \frac { 9 } { 8 } ( 2 + \sqrt { 2 } )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions