Solved

Write a Chain Rule Formula for the Following Derivative A) zt=zrdrds\frac { \partial z } { \partial t } = \frac { \partial z } { \partial r } \frac { d r } { d s }

Question 27

Multiple Choice

Write a chain rule formula for the following derivative.
- zt for z=f(r,s) ;r=g(t) ,s=h(t) \frac { \partial \mathrm { z } } { \partial \mathrm { t } } \text { for } \mathrm { z } = \mathrm { f } ( \mathrm { r } , \mathrm { s } ) ; \mathrm { r } = \mathrm { g } ( \mathrm { t } ) , \mathrm { s } = \mathrm { h } ( \mathrm { t } )


A) zt=zrdrds\frac { \partial z } { \partial t } = \frac { \partial z } { \partial r } \frac { d r } { d s }
B) zt=zrdrdt+zsdsdt\frac { \partial \mathrm { z } } { \partial \mathrm { t } } = \frac { \partial \mathrm { z } } { \partial \mathrm { r } } \frac { \mathrm { dr } } { \mathrm { dt } } + \frac { \partial \mathrm { z } } { \partial \mathrm { s } } \frac { \mathrm { ds } } { \mathrm { dt } }
C) zt=drdt+dsdt\frac { \partial \mathrm { z } } { \partial \mathrm { t } } = \frac { \mathrm { dr } } { \mathrm { dt } } + \frac { \mathrm { ds } } { \mathrm { dt } }
D) zt=zrdtdr+zsdtds\frac { \partial \mathrm { z } } { \partial \mathrm { t } } = \frac { \partial \mathrm { z } } { \partial \mathrm { r } } \frac { \mathrm { dt } } { \mathrm { dr } } + \frac { \partial \mathrm { z } } { \partial \mathrm { s } } \frac { \mathrm { dt } } { \mathrm { ds } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions