Solved

Solve the Initial Value Problem d2rdt2=3t2itj\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm { dt } ^ { 2 } } = 3 \mathrm { t } ^ { 2 } \mathbf { i } - \mathrm { tj }

Question 58

Multiple Choice

Solve the initial value problem.
-Differential Equation: d2rdt2=3t2itj\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm { dt } ^ { 2 } } = 3 \mathrm { t } ^ { 2 } \mathbf { i } - \mathrm { tj }
Initial Conditions: drdtr=0=4i,r(0) =10i3k\left. \frac { \mathrm { d } r } { \mathrm { dt } } \right| _ { \mathrm { r } = 0 } = - 4 \mathbf { i } , \mathrm { r } ( 0 ) = 10 \mathbf { i } - 3 \mathbf { k }


A) r(t) =(14t44t+10) it32j3k\mathbf { r } ( \mathrm { t } ) = \left( \frac { 1 } { 4 } \mathrm { t } ^ { 4 } - 4 \mathrm { t } + 10 \right) \mathrm { i } - \frac { \mathrm { t } ^ { 3 } } { 2 } \mathrm { j } - 3 \mathrm { k }
B) r(t) =(310t44t+10) it36j3k\mathbf { r } ( \mathrm { t } ) = \left( \frac { 3 } { 10 } \mathrm { t } ^ { 4 } - 4 \mathrm { t } + 10 \right) \mathrm { i } - \frac { \mathrm { t } ^ { 3 } } { 6 } \mathrm { j } - 3 \mathrm { k }
C) r(t) =(14t4+4t+10) i+t36j3k\mathbf { r } ( \mathrm { t } ) = \left( \frac { 1 } { 4 } \mathrm { t } ^ { 4 } + 4 \mathrm { t } + 10 \right) \mathrm { i } + \frac { \mathrm { t } ^ { 3 } } { 6 } \mathrm { j } - 3 \mathbf { k }
D) r(t) =(14t44t+10) it36j3k\mathbf { r } ( \mathrm { t } ) = \left( \frac { 1 } { 4 } \mathrm { t } ^ { 4 } - 4 \mathrm { t } + 10 \right) \mathrm { i } - \frac { \mathrm { t } ^ { 3 } } { 6 } \mathrm { j } - 3 \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions