Solved

Solve the Initial Value Problem Initial Condition r(0)=4j\mathbf { r } ( 0 ) = - 4 \mathbf { j }

Question 56

Multiple Choice

Solve the initial value problem.
-Differential Equation: drdt=(sec2t) i+(4t36) j\frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } = \left( \sec ^ { 2 } \mathrm { t } \right) \mathbf { i } + \left( 4 \mathrm { t } ^ { 3 } - 6 \right) \mathbf { j }
Initial Condition: r(0) =4j\mathbf { r } ( 0 ) = - 4 \mathbf { j }


A) r(t) =(tant) i+(12t24) j\mathbf { r } ( \mathrm { t } ) = ( - \tan \mathrm { t } ) \mathbf { i } + \left( 12 \mathrm { t } ^ { 2 } - 4 \right) \mathbf { j }
B) r(t) =(tant) i+(t4) j\mathbf { r } ( \mathrm { t } ) = ( \tan t ) \mathbf { i } + \left( \mathrm { t } ^ { 4 } \right) \mathbf { j }
C) r(t) =(tant) i+(t44) j\mathbf { r } ( \mathrm { t } ) = ( \tan \mathrm { t } ) \mathbf { i } + \left( \mathrm { t } ^ { 4 } - 4 \right) \mathbf { j }
D) r(t) =(tant) i+(t46t4) j\mathbf { r } ( \mathrm { t } ) = ( \tan \mathrm { t } ) \mathbf { i } + \left( \mathrm { t } ^ { 4 } - 6 \mathrm { t } - 4 \right) \mathbf { j }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions