Solved

Find the Principal Unit Normal Vector N for the Curve N=(sint)i(cost)k\mathbf { N } = ( - \sin t ) \mathbf { i } - ( \cos t ) \mathbf { k }

Question 59

Multiple Choice

Find the principal unit normal vector N for the curve r(t) .
-r(t) = (2t sin t + 2 cos t) i + (2t cos t - 2 sin t) ) k


A) N=(sint) i(cost) k\mathbf { N } = ( - \sin t ) \mathbf { i } - ( \cos t ) \mathbf { k }
B) N=(cost) i(sint) k\mathbf { N } = ( \cos t ) \mathbf { i } - ( \sin t ) \mathbf { k }
C) N=22(cost) i22(sint) k\mathbf { N } = - \frac { \sqrt { 2 } } { 2 } ( \cos t ) \mathbf { i } - \frac { \sqrt { 2 } } { 2 } ( \sin t ) \mathbf { k }
D) N=(sint) i+(cost) k\mathbf { N } = ( \sin t ) \mathbf { i } + ( \cos t ) \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions