Solved

Provide an Appropriate Response By Solving the Following Initial Value Problem for a Vector

Question 54

Essay

Provide an appropriate response.
-Derive the equations
x=x0+(v0cosα)ty=y0+(v0sinα)t12g2\begin{array} { l } x = x _ { 0 } + \left( v _ { 0 } \cos \alpha \right) t \\y = y _ { 0 } + \left( v _ { 0 } \sin \alpha \right) t - \frac { 1 } { 2 } g ^ { 2 }\end{array}
by solving the following initial value problem for a vector r\mathbf { r } in the plane.
Differential equation d2rdt2=gj\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm { dt } ^ { 2 } } = - \mathrm { gj } Initial conditions:
r(0)=x0i+y0jdrdt(0)=v0cosα)i+(v0sinα)j\begin{array} { l } \mathbf { r } ( 0 ) = \mathrm { x } _ { 0 } \mathbf { i } + \mathrm { y } _ { 0 } \mathbf { j } \\\left. \frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } ( 0 ) = \mathrm { v } _ { 0 } \cos \alpha \right) \mathbf { i } + \left( \mathrm { v } _ { 0 } \sin \alpha \right) \mathbf { j }\end{array}

Correct Answer:

verifed

Verified

blured image-coordinate:
blured image
Then, blured image
blured image-coordinate:
\[\beg ...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions