Solved

Find T, N, and B for the Given Space Curve r(t)=(8+6sin23t)i+(4+6cos23t)j+3tkr ( t ) = \left( 8 + 6 \sin \frac { 2 } { 3 } t \right) i + \left( 4 + 6 \cos \frac { 2 } { 3 } t \right) j + 3 t k

Question 55

Multiple Choice

Find T, N, and B for the given space curve.
- r(t) =(8+6sin23t) i+(4+6cos23t) j+3tkr ( t ) = \left( 8 + 6 \sin \frac { 2 } { 3 } t \right) i + \left( 4 + 6 \cos \frac { 2 } { 3 } t \right) j + 3 t k


A) T=45(cos0.667t) i45(sin0.667t) j;N=(sin0.667t) i(cos0.667t) j;B=35(cos0.667t) i35(sin0.667t) j\mathrm { T } = \frac { 4 } { 5 } ( \cos 0.667 \mathrm { t } ) \mathbf { i } - \frac { 4 } { 5 } ( \sin 0.667 \mathrm { t } ) \mathbf { j } ; \mathbf { N } = ( - \sin 0.667 \mathrm { t } ) \mathbf { i } - ( \cos 0.667 \mathrm { t } ) \mathbf { j } ; \mathbf { B } = \frac { 3 } { 5 } ( \cos 0.667 \mathrm { t } ) \mathbf { i } - \frac { 3 } { 5 } ( \sin 0.667 \mathrm { t } ) \mathbf { j } - 45k\frac { 4 } { 5 } \mathbf { k }

B) T=45(sin0.667t) i45(cos0.667t) j;N=(sin0.667t) i(cos0.667t) j;B=35(cos0.667t) i35(sin0.667t) j\mathrm { T } = \frac { 4 } { 5 } ( \sin 0.667 \mathrm { t } ) \mathbf { i } - \frac { 4 } { 5 } ( \cos 0.667 \mathrm { t } ) \mathbf { j } ; \mathbf { N } = ( - \sin 0.667 \mathrm { t } ) \mathbf { i } - ( \cos 0.667 \mathrm { t } ) \mathbf { j } ; \mathbf { B } = \frac { 3 } { 5 } ( \cos 0.667 \mathrm { t } ) \mathbf { i } - \frac { 3 } { 5 } ( \sin 0.667 \mathrm { t } ) \mathbf { j } - 45k\frac { 4 } { 5 } \mathbf { k }
C) T=45(cos0.667t) i45(sin0.667t) j+35k;N=(sin0.667t) i(cos0.667t) j;B=45k\mathrm { T } = \frac { 4 } { 5 } ( \cos 0.667 \mathrm { t } ) \mathbf { i } - \frac { 4 } { 5 } ( \sin 0.667 \mathrm { t } ) \mathbf { j } + \frac { 3 } { 5 } \mathbf { k } ; \mathbf { N } = ( - \sin 0.667 \mathrm { t } ) \mathbf { i } - ( \cos 0.667 \mathrm { t } ) \mathbf { j } ; \mathbf { B } = - \frac { 4 } { 5 } \mathbf { k }
D) T=45(cos0.667t) i45(sin0.667t) j+35k;N=(sin0.667t) i(cos0.667t) j;B=35(cos0.667t) i35(sin\mathrm { T } = \frac { 4 } { 5 } ( \cos 0.667 \mathrm { t } ) \mathbf { i } - \frac { 4 } { 5 } ( \sin 0.667 \mathrm { t } ) \mathbf { j } + \frac { 3 } { 5 } \mathbf { k } ; \mathbf { N } = ( - \sin 0.667 \mathrm { t } ) \mathbf { i } - ( \cos 0.667 \mathrm { t } ) \mathbf { j } ; \mathbf { B } = \frac { 3 } { 5 } ( \cos 0.667 \mathrm { t } ) \mathbf { i } - \frac { 3 } { 5 } ( \sin 0.667t) j45k0.667 t ) \mathbf { j } - \frac { 4 } { 5 } \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions