Solved

Represent the Following Curve by a Vector-Valued Function x2121+y264=1,x0\frac { x ^ { 2 } } { 121 } + \frac { y ^ { 2 } } { 64 } = 1 , x \geq 0

Question 52

Multiple Choice

Represent the following curve by a vector-valued function.
x2121+y264=1,x0\frac { x ^ { 2 } } { 121 } + \frac { y ^ { 2 } } { 64 } = 1 , x \geq 0


A) r(t) =11864t2i+tj;0t16\mathbf { r } ( t ) = \frac { 11 } { 8 } \sqrt { 64 - t ^ { 2 } } \mathbf { i } + t \mathbf { j } ; 0 \leq t \leq 16
B) r(t) =11864t2i+tj;0t8\mathbf { r } ( t ) = \frac { 11 } { 8 } \sqrt { 64 - t ^ { 2 } } \mathbf { i } + t \mathbf { j } ; 0 \leq t \leq 8
C) r(t) =11cos2πti+8sin2πtj,14t14\mathbf { r } ( t ) = 11 \cos 2 \pi t \mathbf { i } + 8 \sin 2 \pi t \mathbf { j } , \frac { - 1 } { 4 } \leq t \leq \frac { 1 } { 4 }
D) r(t) =11costi+8sintj;πtπ\mathbf { r } ( t ) = 11 \cos t \mathbf { i } + 8 \sin t \mathbf { j } ; - \pi \leq t \leq \pi
E) r(t) =11cosπti8sinπtj;14t14\mathbf { r } ( t ) = 11 \cos \pi t \mathbf { i } - 8 \sin \pi t \mathbf { j } ; \frac { - 1 } { 4 } \leq t \leq \frac { 1 } { 4 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions