Solved

Space Find the Velocity v(t)\mathbf { v } ( t )

Question 54

Multiple Choice

 The position vector r(t) =(4lnt,2t,6t9)  describes the path of an object moving in \text { The position vector } \mathbf { r } ( t ) = \left( 4 \ln t , \frac { 2 } { t } , 6 t ^ { 9 } \right) \text { describes the path of an object moving in } space. Find the velocity v(t) \mathbf { v } ( t ) of the object.


A) v(t) =4ti+4t2j+54t8k\mathbf { v } ( t ) = \frac { 4 } { t } \mathbf { i } + \frac { 4 } { t ^ { 2 } } \mathbf { j } + 54 t ^ { 8 } \mathbf { k }
B) v(t) =4ti+4t2j+6t8k\mathbf { v } ( t ) = - \frac { 4 } { t } \mathbf { i } + \frac { 4 } { t ^ { 2 } } \mathbf { j } + 6 t ^ { 8 } \mathbf { k }
C) v(t) =4ti+2t2j+54t8k\mathbf { v } ( t ) = - \frac { 4 } { t } \mathbf { i } + \frac { 2 } { t ^ { 2 } } \mathbf { j } + 54 t ^ { 8 } \mathbf { k }
D) v(t) =4ti2t2j+54t8k\mathbf { v } ( t ) = \frac { 4 } { t } \mathbf { i } - \frac { 2 } { t ^ { 2 } } \mathbf { j } + 54 t ^ { 8 } \mathbf { k }
E) v(t) =4ti2t2j+6t8k\mathbf { v } ( t ) = - \frac { 4 } { t } \mathbf { i } - \frac { 2 } { t ^ { 2 } } \mathbf { j } + 6 t ^ { 8 } \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions