Solved

Find a Vector-Valued Function, Using the Given Parameter, to Represent  Surfaces  Parameter x2+y2+z2=36,x+y=6x=3+3sint\begin{array}{ll}\text { Surfaces } & \text { Parameter } \\x^{2}+y^{2}+z^{2}=36, x+y=6 & x=3+3 \sin t\end{array}

Question 55

Multiple Choice

Find a vector-valued function, using the given parameter, to represent the intersection of the surfaces given below.  Surfaces  Parameter x2+y2+z2=36,x+y=6x=3+3sint\begin{array}{ll}\text { Surfaces } & \text { Parameter } \\x^{2}+y^{2}+z^{2}=36, x+y=6 & x=3+3 \sin t\end{array}


A) r(t) =(3+3sint) i+(33sint) j+32sintk\mathbf { r } ( t ) = ( 3 + 3 \sin t ) \mathbf { i } + ( 3 - 3 \sin t ) \mathbf { j } + 3 \sqrt { 2 } \sin t \mathbf { k }
B) r(t) =(3+3sint) i+(33sint) j+32costk\mathbf { r } ( t ) = ( 3 + 3 \sin t ) \mathbf { i } + ( 3 - 3 \sin t ) \mathbf { j } + 3 \sqrt { 2 } \cos t \mathbf { k }
C) r(t) =(3+3sint) i+(3+3sint) j+32costk\mathbf { r } ( t ) = ( 3 + 3 \sin t ) \mathbf { i } + ( 3 + 3 \sin t ) \mathbf { j } + 3 \sqrt { 2 } \cos t \mathbf { k }
D) r(t) =(3+3sint) i+(33cost) j+32costk\mathbf { r } ( t ) = ( 3 + 3 \sin t ) \mathbf { i } + ( 3 - 3 \cos t ) \mathbf { j } + 3 \sqrt { 2 } \cos t \mathbf { k }
E) r(t) =(3+3sint) i+(33cost) j+6costk\mathbf { r } ( t ) = ( 3 + 3 \sin t ) \mathbf { i } + ( 3 - 3 \cos t ) \mathbf { j } + \sqrt { 6 } \cos t \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions