Solved

Suppose the Outer Edge of a Playground Slide Is in the Shape

Question 56

Multiple Choice

Suppose the outer edge of a playground slide is in the shape of a helix of radius 10.5 meters. The slide has a height of 2 meters and makes one complete revolution from top to bottom. Find a vector-valued function for the helix.


A) r(t) =10.5costi+10.5sintj+tk,0t4π\mathbf { r } ( t ) = 10.5 \cos t \mathbf { i } + 10.5 \sin t \mathbf { j } + t \mathbf { k } , \quad 0 \leq t \leq 4 \pi
B) r(t) =10.5costi+10.5sintj+1πtk,0t2π\mathbf { r } ( t ) = 10.5 \cos t \mathbf { i } + 10.5 \sin t \mathbf { j } + \frac { 1 } { \pi } t \mathbf { k } , \quad 0 \leq t \leq 2 \pi
C) r(t) =10.5costi+2sintj+1πtk,0t2π\mathbf { r } ( t ) = 10.5 \cos t \mathbf { i } + 2 \sin t \mathbf { j } + \frac { 1 } { \pi } t \mathbf { k } , \quad 0 \leq t \leq 2 \pi
D) r(t) =10.5costi+10.5sintj+1πtk,0t4π\mathbf { r } ( t ) = 10.5 \cos t \mathbf { i } + 10.5 \sin t \mathbf { j } + \frac { 1 } { \pi } t \mathbf { k } , \quad 0 \leq t \leq 4 \pi
E) r(t) =10.5costi+2sintj+tk,0t4π\mathbf { r } ( t ) = 10.5 \cos t \mathbf { i } + 2 \sin t \mathbf { j } + t \mathbf { k } , \quad 0 \leq t \leq 4 \pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions