Solved

Use the Properties of the Derivative to Find Dt(r(t)×u(t)) given the following D _ { t } ( \mathbf { r } ( t ) \times \mathbf { u } ( t ) ) \text { given the following }

Question 10

Multiple Choice

Use the properties of the derivative to find
Dt(r(t) ×u(t) )  given the following D _ { t } ( \mathbf { r } ( t ) \times \mathbf { u } ( t ) ) \text { given the following } vector-valued functions. r(t) =4cos4tj+4sin4tku(t) =5ti+4cos4tj+4sin4tk\begin{array} { l } \mathbf { r } ( t ) = 4 \cos 4 t \mathbf { j } + 4 \sin 4 t \mathbf { k } \\\mathbf { u } ( t ) = \frac { 5 } { t } \mathbf { i } + 4 \cos 4 t \mathbf { j } + 4 \sin 4 t \mathbf { k }\end{array}


A) (80cos(4t) t20sin(4t) t2) j+(20cos(4t) t280sin(4t) t) k\left( \frac { 80 \cos ( 4 t ) } { t } - \frac { 20 \sin ( 4 t ) } { t ^ { 2 } } \right) \mathbf { j } + \left( \frac { 20 \cos ( 4 t ) } { t ^ { 2 } } - \frac { 80 \sin ( 4 t ) } { t } \right) \mathbf { k }
B) (80cos(4t) t+20sin(4t) t2) j+(20cos(4t) t2+80sin(4t) t) k\left( \frac { 80 \cos ( 4 t ) } { t } + \frac { 20 \sin ( 4 t ) } { t ^ { 2 } } \right) \mathbf { j } + \left( \frac { 20 \cos ( 4 t ) } { t ^ { 2 } } + \frac { 80 \sin ( 4 t ) } { t } \right) \mathbf { k }
C) (80cos(4t) t220sin(4t) t) j+(20cos(4t) t2+80sin(4t) t) k\left( \frac { 80 \cos ( 4 t ) } { t ^ { 2 } } - \frac { 20 \sin ( 4 t ) } { t } \right) \mathbf { j } + \left( \frac { 20 \cos ( 4 t ) } { t ^ { 2 } } + \frac { 80 \sin ( 4 t ) } { t } \right) \mathbf { k }
D) (80cos(4t) t20sin(4t) t2) i+(20cos(4t) t280sin(4t) t) k\left( \frac { 80 \cos ( 4 t ) } { t } - \frac { 20 \sin ( 4 t ) } { t ^ { 2 } } \right) \mathbf { i } + \left( \frac { 20 \cos ( 4 t ) } { t ^ { 2 } } - \frac { 80 \sin ( 4 t ) } { t } \right) \mathbf { k }
E) (80cos(4t) t20sin(4t) t2) j+(20cos(4t) t2+80sin(4t) t) k\left( \frac { 80 \cos ( 4 t ) } { t } - \frac { 20 \sin ( 4 t ) } { t ^ { 2 } } \right) \mathbf { j } + \left( \frac { 20 \cos ( 4 t ) } { t ^ { 2 } } + \frac { 80 \sin ( 4 t ) } { t } \right) \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions