Solved

Find the Principle Unit Normal Vector to the Curve Given r(t)=ti+4tj,t=3\mathbf { r } ( t ) = t \mathbf { i } + \frac { 4 } { t } \mathbf { j } , \quad t = 3

Question 7

Multiple Choice

Find the principle unit normal vector to the curve given below at the specified point. r(t) =ti+4tj,t=3\mathbf { r } ( t ) = t \mathbf { i } + \frac { 4 } { t } \mathbf { j } , \quad t = 3


A) N(3) =497i997jN ( 3 ) = \frac { 4 } { \sqrt { 97 } } \mathbf { i } - \frac { 9 } { \sqrt { 97 } } \mathbf { j }
B) N(3) =497i+997jN ( 3 ) = \frac { 4 } { \sqrt { 97 } } \mathbf { i } + \frac { 9 } { \sqrt { 97 } } \mathbf { j }
C) N(3) =41297i91297jN ( 3 ) = \frac { 4 } { \sqrt { 1297 } } \mathbf { i } - \frac { 9 } { \sqrt { 1297 } } \mathbf { j }
D) N(3) =41297i+91297jN ( 3 ) = \frac { 4 } { \sqrt { 1297 } } \mathbf { i } + \frac { 9 } { \sqrt { 1297 } } \mathbf { j }
E) N(3) =497i997jN ( 3 ) = \frac { - 4 } { \sqrt { 97 } } \mathbf { i } - \frac { 9 } { \sqrt { 97 } } \mathbf { j }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions