Solved

Find the Unit Tangent Vector T(t) for the line tangent to the space curve \mathrm { T } ( t ) \text { for the line tangent to the space curve }

Question 59

Multiple Choice

Find the unit tangent vector
T(t)  for the line tangent to the space curve \mathrm { T } ( t ) \text { for the line tangent to the space curve } r(t) =12cost,12sint,3) \mathbf { r } ( t ) = \langle 12 \cos t , 12 \sin t , 3 ) at point p(62,62,3) p ( 6 \sqrt { 2 } , 6 \sqrt { 2 } , 3 ) .


A) T(π4) =14(2,2,3) \mathbf { T } \left( \frac { \pi } { 4 } \right) = \frac { 1 } { 4 } ( - \sqrt { 2 } , - \sqrt { 2 } , 3 )
B) T(π4) =14(2,2,0) \mathrm { T } \left( \frac { \pi } { 4 } \right) = \frac { 1 } { 4 } ( - \sqrt { 2 } , \sqrt { 2 } , 0 )
C) T(π4) =12(2,2,3) \mathrm { T } \left( \frac { \pi } { 4 } \right) = \frac { 1 } { 2 } ( \sqrt { 2 } , - \sqrt { 2 } , 3 )
D) T(π4) =12(2,2,0) \mathrm { T } \left( \frac { \pi } { 4 } \right) = \frac { 1 } { 2 } ( - \sqrt { 2 } , \sqrt { 2 } , 0 )
E) T(π4) =12(2,2,0) \mathrm { T } \left( \frac { \pi } { 4 } \right) = \frac { 1 } { 2 } ( \sqrt { 2 } , - \sqrt { 2 } , 0 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions