Solved

Find the Derivative of the Trigonometric Function y=cos3x+sin2xy = \cos 3 x + \sin ^ { 2 } x

Question 31

Multiple Choice

Find the derivative of the trigonometric function. y=cos3x+sin2xy = \cos 3 x + \sin ^ { 2 } x


A) 3sin3x+2sinxcosx- 3 \sin 3 x + 2 \sin x \cos x
B) 3sin3x2sinxcosx3 \sin 3 x - 2 \sin x \cos x
C) 3sin3x+2sin2xcosx3 \sin 3 x + 2 \sin ^ { 2 } x \cos x
D) sin3x+2sin2xcos2x- \sin 3 x + 2 \sin ^ { 2 } x \cos ^ { 2 } x
E) 3sin2x+sin2xcos2x- 3 \sin ^ { 2 } x + \sin ^ { 2 } x \cos ^ { 2 } x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions