Solved

Find an Equation of the Tangent Line to the Graph y=cotxy = \cot x

Question 27

Multiple Choice

Find an equation of the tangent line to the graph of the function at the given point. y=cotxy = \cot x (3π4,1) \left( \frac { 3 \pi } { 4 } , - 1 \right)


A) y=2x+32π1y = - 2 x + \frac { 3 } { 2 } \pi - 1
B) y=2x+12π1y = 2 x + \frac { 1 } { 2 } \pi - 1
C) y=2x12πy = - 2 x - \frac { 1 } { 2 } \pi
D) y=x52π1y = - x - \frac { 5 } { 2 } \pi - 1
E) y=2x32π+1y = 2 x - \frac { 3 } { 2 } \pi + 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions