Solved

Determine the Relative Extrema of the Function e5xcosxe ^ { 5 x } \cos x

Question 28

Multiple Choice

Determine the relative extrema of the function e5xcosxe ^ { 5 x } \cos x on the interval (0,2π) ( 0,2 \pi ) .


A) relative minimum: (22e25π4,5π4) \left( - \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 25 \pi } { 4 } } , \frac { 5 \pi } { 4 } \right) relative maximum: (22e5π4,π4) \left( \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 5 \pi } { 4 } } , \frac { \pi } { 4 } \right)
B) relative minimum: (π4,22e5π4) \left( \frac { \pi } { 4 } , - \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 5 \pi } { 4 } } \right) relative maximum: (5π4,22e25π4) \left( \frac { 5 \pi } { 4 } , \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 25 \pi } { 4 } } \right)
C) relative minimum: (5π4,22e25π4) \left( \frac { 5 \pi } { 4 } , - \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 25 \pi } { 4 } } \right) relative maximum: (π4,22e5π4) \left( \frac { \pi } { 4 } , \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 5 \pi } { 4 } } \right)
D) relative minimum: (5π4,22e5π4) \left( \frac { 5 \pi } { 4 } , \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 5 \pi } { 4 } } \right) relative maximum: (π4,22e25π4) \left( \frac { \pi } { 4 } , - \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 25 \pi } { 4 } } \right)
E) relative minimum: (22e5π4,5π4) \left( \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 5 \pi } { 4 } } , \frac { 5 \pi } { 4 } \right) relative maximum: (22e25π4,π4) \left( - \frac { \sqrt { 2 } } { 2 } e ^ { \frac { 25 \pi } { 4 } } , \frac { \pi } { 4 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions