Solved

The General Solution of the Exact Differential Equation (xy)dx+(x+y)dyx2+y2=0\frac { ( x - y ) d x + ( x + y ) d y } { x ^ { 2 } + y ^ { 2 } } = 0

Question 44

Multiple Choice

The general solution of the exact differential equation (xy) dx+(x+y) dyx2+y2=0\frac { ( x - y ) d x + ( x + y ) d y } { x ^ { 2 } + y ^ { 2 } } = 0 is


A) lnx2+y2tan1(yx) =C- \ln \sqrt { x ^ { 2 } + y ^ { 2 } } - \tan ^ { - 1 } \left( \frac { y } { x } \right) = C
B) lnx2+y2tan1(xy) =C\ln \sqrt { x ^ { 2 } + y ^ { 2 } } - \tan ^ { - 1 } \left( \frac { x } { y } \right) = C
C) lnx2+y2+tan1(yx) =C- \ln \sqrt { x ^ { 2 } + y ^ { 2 } } + \tan ^ { - 1 } \left( \frac { y } { x } \right) = C
D) lnx2+y2tan1(yx) =C\ln \sqrt { x ^ { 2 } + y ^ { 2 } } - \tan ^ { - 1 } \left( \frac { y } { x } \right) = C
E) lnx2+y2+tan1(yx) =C\ln \sqrt { x ^ { 2 } + y ^ { 2 } } + \tan ^ { - 1 } \left( \frac { y } { x } \right) = C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions