Solved

Using Maclaurin Series, the General Series Solution, with the First y+xy=0y ^ { \prime \prime } + x y = 0

Question 47

Multiple Choice

Using Maclaurin series, the general series solution, with the first three nonzero terms, of the differential equation y+xy=0y ^ { \prime \prime } + x y = 0 is


A) y=A(1x36+x6180) +B(x+x412+x7504+) y = A \left( 1 - \frac { x ^ { 3 } } { 6 } + \frac { x ^ { 6 } } { 180 } - \cdots \right) + B \left( x + \frac { x ^ { 4 } } { 12 } + \frac { x ^ { 7 } } { 504 } + \cdots \right)
B) y=A(1x36+x6180) +B(xx412+x7504) y = A \left( 1 - \frac { x ^ { 3 } } { 6 } + \frac { x ^ { 6 } } { 180 } - \cdots \right) + B \left( x - \frac { x ^ { 4 } } { 12 } + \frac { x ^ { 7 } } { 504 } - \cdots \right)
C) y=A(1+x36+x6180+) +B(xx412+x7504) y = A \left( 1 + \frac { x ^ { 3 } } { 6 } + \frac { x ^ { 6 } } { 180 } + \cdots \right) + B \left( x - \frac { x ^ { 4 } } { 12 } + \frac { x ^ { 7 } } { 504 } - \cdots \right)
D) y=A(1x36x6180) +B(xx412x7504) y = A \left( 1 - \frac { x ^ { 3 } } { 6 } - \frac { x ^ { 6 } } { 180 } - \cdots \right) + B \left( x - \frac { x ^ { 4 } } { 12 } - \frac { x ^ { 7 } } { 504 } - \cdots \right)
E) y=A(1+x36+x6180+) +B(x+x412+x7504+) y = A \left( 1 + \frac { x ^ { 3 } } { 6 } + \frac { x ^ { 6 } } { 180 } + \cdots \right) + B \left( x + \frac { x ^ { 4 } } { 12 } + \frac { x ^ { 7 } } { 504 } + \cdots \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions