Solved

Using Maclaurin Series, the General Series Solution, with the First y+xy+y=0y ^ { \prime \prime } + x y ^ { \prime } + y = 0

Question 51

Multiple Choice

Using Maclaurin series, the general series solution, with the first three nonzero terms, of the differential equation y+xy+y=0y ^ { \prime \prime } + x y ^ { \prime } + y = 0 is


A) y=A(1x22!+3x44!35x66!+) +B(x+2x33!+24x55!+246x77!+) y = A \left( 1 - \frac { x ^ { 2 } } { 2 ! } + \frac { 3 x ^ { 4 } } { 4 ! } - \frac { 3 \cdot 5 x ^ { 6 } } { 6 ! } + \cdots \right) + B \left( x + \frac { 2 x ^ { 3 } } { 3 ! } + \frac { 2 \cdot 4 x ^ { 5 } } { 5 ! } + \frac { 2 \cdot 4 \cdot 6 x ^ { 7 } } { 7 ! } + \cdots \right)
B) y=A(1+x22!+3x44!+35x66!+) +B(x2x33!+24x55!246x77!+) y = A \left( 1 + \frac { x ^ { 2 } } { 2 ! } + \frac { 3 x ^ { 4 } } { 4 ! } + \frac { 3 \cdot 5 x ^ { 6 } } { 6 ! } + \cdots \right) + B \left( x - \frac { 2 x ^ { 3 } } { 3 ! } + \frac { 2 \cdot 4 x ^ { 5 } } { 5 ! } - \frac { 2 \cdot 4 \cdot 6 x ^ { 7 } } { 7 ! } + \cdots \right)
C) y=A(1x22!+3x44!35x66!+) +B(x2x33!24x55!246x77!) y = A \left( 1 - \frac { x ^ { 2 } } { 2 ! } + \frac { 3 x ^ { 4 } } { 4 ! } - \frac { 3 \cdot 5 x ^ { 6 } } { 6 ! } + \cdots \right) + B \left( x - \frac { 2 x ^ { 3 } } { 3 ! } - \frac { 2 \cdot 4 x ^ { 5 } } { 5 ! } - \frac { 2 \cdot 4 \cdot 6 x ^ { 7 } } { 7 ! } - \cdots \right)
D) y=A(1x22!3x44!35x66!) +B(x2x33!+24x55!246x77!+) y = A \left( 1 - \frac { x ^ { 2 } } { 2 ! } - \frac { 3 x ^ { 4 } } { 4 ! } - \frac { 3 \cdot 5 x ^ { 6 } } { 6 ! } - \cdots \right) + B \left( x - \frac { 2 x ^ { 3 } } { 3 ! } + \frac { 2 \cdot 4 x ^ { 5 } } { 5 ! } - \frac { 2 \cdot 4 \cdot 6 x ^ { 7 } } { 7 ! } + \cdots \right)
E) y=A(1x22!+3x44!35x66!+) +B(x2x33!+24x55!246x77!+) y = A \left( 1 - \frac { x ^ { 2 } } { 2 ! } + \frac { 3 x ^ { 4 } } { 4 ! } - \frac { 3 \cdot 5 x ^ { 6 } } { 6 ! } + \cdots \right) + B \left( x - \frac { 2 x ^ { 3 } } { 3 ! } + \frac { 2 \cdot 4 x ^ { 5 } } { 5 ! } - \frac { 2 \cdot 4 \cdot 6 x ^ { 7 } } { 7 ! } + \cdots \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions