Solved

Using Maclaurin Series, the General Series Solution, with the First y2xy+y=0y ^ { \prime \prime } - 2 x y ^ { \prime } + y = 0

Question 89

Multiple Choice

Using Maclaurin series, the general series solution, with the first three nonzero terms, of the differential equation y2xy+y=0y ^ { \prime \prime } - 2 x y ^ { \prime } + y = 0 is


A) A(1x22!+3x44!) +B(xx33!+(1) (5) x55!) A \left( 1 - \frac { x ^ { 2 } } { 2 ! } + \frac { 3 x ^ { 4 } } { 4 ! } - \cdots \right) + B \left( x - \frac { x ^ { 3 } } { 3 ! } + \frac { ( 1 ) ( 5 ) x ^ { 5 } } { 5 ! } - \cdots \right)
B) A(1x22!+3x44!) +B(x+x33!+(1) (5) x55!+) A \left( 1 - \frac { x ^ { 2 } } { 2 ! } + \frac { 3 x ^ { 4 } } { 4 ! } - \cdots \right) + B \left( x + \frac { x ^ { 3 } } { 3 ! } + \frac { ( 1 ) ( 5 ) x ^ { 5 } } { 5 ! } + \cdots \right)
C) A(1+x22!+3x44!+) +B(x+x33!+(1) (5) x55!+) A \left( 1 + \frac { x ^ { 2 } } { 2 ! } + \frac { 3 x ^ { 4 } } { 4 ! } + \cdots \right) + B \left( x + \frac { x ^ { 3 } } { 3 ! } + \frac { ( 1 ) ( 5 ) x ^ { 5 } } { 5 ! } + \cdots \right)
D) y=A(1x22!3x44!) +B(x+x33!+(1) (5) x55!+) y = A \left( 1 - \frac { x ^ { 2 } } { 2 ! } - \frac { 3 x ^ { 4 } } { 4 ! } - \cdots \right) + B \left( x + \frac { x ^ { 3 } } { 3 ! } + \frac { ( 1 ) ( 5 ) x ^ { 5 } } { 5 ! } + \cdots \right)
E) A(1x22!3x44!) +B(xx33!(1) (5) x55!) A \left( 1 - \frac { x ^ { 2 } } { 2 ! } - \frac { 3 x ^ { 4 } } { 4 ! } - \cdots \right) + B \left( x - \frac { x ^ { 3 } } { 3 ! } - \frac { ( 1 ) ( 5 ) x ^ { 5 } } { 5 ! } - \cdots \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions