Solved

Using Maclaurin Series, the General Series Solution, with the First y+2xy+2y=0y ^ { \prime \prime } + 2 x y ^ { \prime } + 2 y = 0

Question 91

Multiple Choice

Using Maclaurin series, the general series solution, with the first three nonzero terms, of the differential equation y+2xy+2y=0y ^ { \prime \prime } + 2 x y ^ { \prime } + 2 y = 0 is


A) y=A(1x2+x42) +B(x2x33+4x515+) y = A \left( 1 - x ^ { 2 } + \frac { x ^ { 4 } } { 2 } - \cdots \right) + B \left( x - \frac { 2 x ^ { 3 } } { 3 } + \frac { 4 x ^ { 5 } } { 15 } + \cdots \right)
B) y=A(1+x2x42+) +B(x2x33+4x515+) y = A \left( 1 + x ^ { 2 } - \frac { x ^ { 4 } } { 2 } + \cdots \right) + B \left( x - \frac { 2 x ^ { 3 } } { 3 } + \frac { 4 x ^ { 5 } } { 15 } + \cdots \right)
C) y=A(1x2+x42) +B(x+2x334x515+) y = A \left( 1 - x ^ { 2 } + \frac { x ^ { 4 } } { 2 } - \cdots \right) + B \left( x + \frac { 2 x ^ { 3 } } { 3 } - \frac { 4 x ^ { 5 } } { 15 } + \cdots \right)
D) y=A(1+x2+x42) +B(x+2x33+4x515+) y = A \left( 1 + x ^ { 2 } + \frac { x ^ { 4 } } { 2 } - \cdots \right) + B \left( x + \frac { 2 x ^ { 3 } } { 3 } + \frac { 4 x ^ { 5 } } { 15 } + \cdots \right)
E) y=A(1x2+x42) +B(x2x33+4x515) y = A \left( 1 - x ^ { 2 } + \frac { x ^ { 4 } } { 2 } - \cdots \right) + B \left( x - \frac { 2 x ^ { 3 } } { 3 } + \frac { 4 x ^ { 5 } } { 15 } - \cdots \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions